
AFATL-TR-88-156

Image Algebra FORTRAN Preprocessor
User's Manual

NJ N Wilson

D C Wilson
G X Ritter

UNIVERSITY OF FLORIDA
I DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

301 COMPUTER SCIENCE AND ENGINEERING BUILDING
GAINESVILLE, FLORIDA 32611

DTIC-- -;- ++ ELECT E

APR 2P281989MARCH 1989

FINAL REPORT FOR PERIOD JANUARY TO DECEMBER 1987

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AIR FORCE ARMAMENT LABORATORY
Air Force Systems Commandl United States Air Force lEglin Air Force Base, Florida

089 4 "-)

=-... -,0 ..

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely related Government procure-
ment operation, the United States Government thereby incurs no responstbility
nor any obligation whatsoever; and the fact that the Government may have formu-
lated, furnished, or in any way supplied the said drawings, specifications, or
other data, is not to be regarded by implication or otherwise as in any manner
licensing the holder or any other person or corporation, or conveying any
rights or permission to manufacture, use, or sell any patented invention that
may in any way be related thereto.

The AFATL STINFO program manager has reviewed this report, and it is
-- releasable to the National Technical Information Service (NTIS). At NTIS,

it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

NICHOLAS C. HABLENKO, Lt Col, USAF
Acting Chief, Advanced Guidance Division

- . If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization, please
notify AFATL/ AGS , Eglin AFB FL 32542-5434.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

:dE

fi
.-

I L-
- - .

-.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la- REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for Public Release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFATL-TR-88-156

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
University of Florida (If applicable) Air-to-Surface Guidance Branch
Dept of Computer & Info Sciences CIS Advanced Guidance Division

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS(City, State, and ZIP Code)

301 Computer Science and Engineering Building Air Force Armament Laboratory
University of Florida Eglin Air Force Base, Florida 32542-5434
Gainesville, Florida 32611
Ba. NAME OF FUNDING Y SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

AFATL/AGS & DARA/TTO F08635-84-C-0295

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
AFATL/AGS DARPA/TTO PROGRAM PROJECT TASK WORK UNIT
Eglin AFB, FL 1400 Wilson Blvd ELEMENT NO. NO. NO ACCESSION NO

32542-5434 Arlington, VA 62602F 2068 06 44

11. TITLE (Include Security Classification)

Image Algebra FORTRAN Preprocessor - User's Manual

72. PERSONAL AUTHOR(S)
Joseph N. Wilson, D. Clay Wilson, G. X. Ritter

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final I FROM Jan 87 TO Dec 87 March 1989 T 85
16. SUPPLEMENTARY NOTATION

Availability of this report is specified on verso of front cover.
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Image Algebra Pattern Recognition

16 04 Mathematical Morphology Image Segmentation

17 07 Image Processing
9. A8STRAC7 (Continue on reverse if necessary and identify by block number)
This report provides an algorithm developer with a user's manual for the Image Algebra,
FORTRAN 77, Preprocessor. The manual contains a thorough description of the capabilities
and limitations of the preprocessor's code. Its emphasis is on providing a variety of
step-by-step descriptions, with illustrations, that clearly demonstrate how to use the pre-
processor syntax to express image processing transformations and information extraction

techniques.

20 D:STRiBUTION/AVAILA8IL!TY .1' A_ RACT 21. ABSTRACT SECURITY CLASSIFICATION

C UNCLASSIFIED/UNLIMITED n SAME AS RPT [DTIC USERS Unclassified

22a NAME OF RESPONSIBLE !NDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Patrick C. Coffield (904) 882-2838 AFATL/AGS

DD Form 1473. JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

PREFACE

This report covers the period from June 1987 to December 1987. It was prepared by

the Department of Computer and Information Sciences, 301 Computer Science and Engineer-

ing Building, University of Florida, Gainesville, Florida 32611, under Air Force Contract

F08635-84-C-0295 with the Air Force Armament Laboratory, Eglin AFB, FL 32542-5434.

The authors wish to thank the Air Force Armament Laboratory (AFATL) and the

Defense Advanced Research Projects Agency (DARPA) for spcnsc;Xi this work. %'c arc

particularly grateful to Dr. Sam Lambert (AFATL), Dr. Donald Daniel (AFATL), and to Dr.

Jasper Lupo (DARPA) for sensing the importance of a solidly-grounded, usable image pro-

cessing algebra, and for generously sharing their resources with us. We wish to acknowledge

in a special way the su'pport received from our program manager, Mr. Neal Urquhart (ASE).

His constant encouragement, helpful comments, and untiring support made the work of this

project more fruitful than anyone had thought possible.

Accession For

14TIS GRA&I
DTIC TAB
Unannounced
Justiricatio

By
Distribution/

Availability Codes
'Avaflt and/or

Dist Special

-1

iii/iv (Blank)

TABLE OF CONTENTS

Section Title Page

I IN T R O D U C T IO N .. 1

II A BRIEF TOUR OF THE MIAGE ALGEBRA 2

1. COORDINATE SETS, VALUE SETS, AND IMAGES 2
2. UNARY AND BINARY IMAGE OPERATIONS 3
3. TEMPLATES AND TEMPLATE OPERATIONS 7
4. CORRESPONDENCE OF SYMBOLS TO MNEMONICS 11

III IMAGE ALGEBRA EXTENSIONS TO FORTRAN 77 13

1. O V E R V IE W ... 13
2. IMAGE ALGEBRA FORTRAN OPERANDS 14
3. IMAGE ALGEBRA FORTRAN ARITHMETIC

O PERA T O R S .. 22
4. T EM P LA T ES ... 28
5. IMAGE ALGEBRA EXPRESSIONS AND THEIR USE 33
6. FURTHER RESTRICTIONS AND EXCEPTIONS 37

IV EXAMPLES OF THE USE OF IMAGE ALGEBRA FORTRAN
.. 4 2

V INSTALLAT IO N G UIDE ... 54

1. PREPROCESSOR OVERVIEW .. 54
2. CUSTOMIZING THE PREPROCESSOR 55
3. RUN-TIM E ERROR-HANDLER .. 65
4. COMPILING THE PREPROCESSOR .. 66
5. ANSI NONCOMPLIANCE .. 67

Appendix

A LAF ARITHMETIC EXPRESSION GRANMIAR 69

B PREPROCESSOR-RESERVED NAMES .. 73

R E F E R E N C E S 77

v

LIST OF FIGURES

Figure Title Page

1 Example Image 3
2 Images a and b .. 4
3 Images c = a+b and d = a*b .. 4
4 Image e = a!maxb ... 5
5 Image a ... 6
6 a>5 and a>30 .. 6
7 A pictorial example of a template from Y to X
8 A translation invariant template ... 8
9 Averaging template tayg .. 9

10 Image a and the result of a ! gcon t,,, .. . 9
11 a !g c on s 10
12 Ir. age a and image a thresholded to range 5 to 25 42
13 Sobel Templates sobell and sobel2 ... 44
14 Image a and the Sobel edges o" image a .. 45
15 Image a and image a ! gcon trans(20, 20) ... 47
16 Image a and result of program variants on a 48
17 Binary image a and image showing computed centroid of a 50
18 Image a and image a rotated 23 degrees .. 53

vi

LIST OF TABLES
Table Title Page

1 UNARY OPERATIONS SYMBOLS AND MNEMONICS 11
2 BINARY OPERATION SYMBOLS AND MNEMONICS 11
3 CHARACTERISTIC FUNCTION SYMBOLS AND MNEMONICS

.. 1 2
4 IMAGE TEMPLATE OPERATION SYMBOLS AND MNEMONICS

.. 1 2
5 IAF OPERATOR PRECEDENCE HIERARCHY 34

vii/viij lluk

SECTION I

INTRODUCTION

This document describes the Image Algebra FORTRAN language and its preprocessor

implementation at the University of Florida Center for Computer Vision Research. The

Image Algebra is a comprehensive notation in which all image processing transformations can

be expressed. The Image Algebra FORTRAN (LAF) preprocessor supports a subset of the

Image Algebra, extending FORTRAN77 to support Image Algebra operations.

While this document is not intended to be a comprehensive introduction to the Image

Algebra, an overview is presented of those Image Algebra constructs supported in JAF in the

next section. The third section describes the extensions to FORTRAN77 provided by IAF.

Example IAF programs showing some simple image processing transformations carried out in

IAF programs are given. The document concludes with a guide explaining how to install

image Algebra FORTRAN on a given syztem.

SECTION II

A BRIEF TOUR OF THE IMAGE ALGEBRA

The Image Algebra is an algebra designed especially for the manipulation of images.

This section introduces the Image Algebra by defining its operations and operands. Thi; sec-

tion briefly introduces only those Image Algebra operations and operands supported by the

Image Algebra FORTRAN preprocessor. A complete introduction to the full Image Algebra

can be found in Reference 1.

Any algebra consists of a set of operands and operations. In the subset of the Image

Algebra supported by Image Algebra FORTRAN, the operands of interest are values,

images, and templates. The Image Algebra supports unary and binary image operations that

yield image results, unary and binary image operations that yield scalar valued results, and

binary operations computing an image from an image and a template. This section defines

and discusses each of the supported operands and operations in this section.

1. COORDINATE SETS, VALUE SETS, AND IMAGES

An image in the Image Algebra is a function from a coordinate set into a value set; that

is, an image assigns some value to each coordinate (or pixel location) in some coordinate set.

2

Figure 1. Example Image

Figure 1 shows an image of an sr7l airplane. The values assigned to the coordinates of

this image are integers in the range 0 to 31. Each value is assigned a shade of gray, white

being assigned to value 0 and black being assigned to value 31. Such an image is represented

in Image Algebra FORTRAN by an array. This representation of image as arrays means

that the coordinate set of an image is merely the set of valid array subscripts for the array

representing that image. So in Image Algebra FORTRAN all images are rectangular.

T hroughout this manual a, 'U, and cth-r bold lowercase Roman letters at the beginning of

the alphabet are used to represent images: X and Y are coordinate sets: and x and y with or

without subscripts represent elements of coordinate sets.

2. UNARY AND BINARY IM,£AGE OPERATIONS

Any unary or binary operation defined over a set of gray values can be applied to images

with that gray value set. If a binary operation is applied to two image arguments, those

image arguments must have the same coordinate set. When applying an operation to image

operands, the operation is applied pointwise to its arguments, yielding a result image with

the same coordinate set as the arguments.

3

mU

Figure 2. Images a and b

Consider the images a and b shown in Figure 2. Both of these images contain only pix-

els with values 0 and 1. Now consider what happens if one adds the images together. To do

this we add the pixel values in each location of these two images to yield a result image c.

The formal definition of addition of a and b, two images with coordinate set X, is given as

follows:

a+b = c where c(x) a(x)+b(x) for all xEX.

Similarly, consider d = a*b

a*b = d where d(x) = a(x)*b(x) for all xEX.

The images of Figure 3 show the result of both adding and multiplying images a and b

in this manner. In these images the value 0 is represented by white, value 1 by gray, and

value 2 by black.

Figure 3. Images c = a+b and d = a*b

In th1 Irmagp Algebra, any binary or unary operation that can be performed on a gray

value can b' performed on an image in this fashion.

4

In addition to the usual FORTRAN operations, the Image Algebra supports other

binary operations. The linage Algebra FORTRAN preprocessor represents these non-

FORTRAN operations with mnemonic strings beginning with an exclamation point. In this

treatment we use those mnemonics rather than Image Algebra Standard symbols. A table of

mnemonic to symbol correspondence is given at the end of this section. The binary point-

wise maximum and minimum are provided in the algebra. The maximum e of images a and

b is defined to be

a ! max b = e, where e(x) = max(a(x),b(x)) for all xEX.

Figure 4. Image e =a ! max b

The limage Algebra also supports an image dot product operation. The Image Algebra

FORTRAN mnemonic operation symbol for the dot product is !dot. This operation is

(if-fined as

a 'dot b Za~x)*Ib~x).
,xEX

Whlen applied to an image co:nsi, ting of only ones and zeros, this operation yields the number

of pixels wkit li valuie one.

Se veral new unary operations mapping an image into a scalar are providedl az; well:

in age sum. im iuin. an" mnin imum. represented respectively by the rmemonics Isum.

Imax. 'min. Tht. image sumn yields the suim of the values at each 1lixel in the :ir-unient

ifmge(. iinarY mraximumn yids the maximum value at any pixel, and inimlium Yields the'

rimi II m :i lii :it any pixel. That is. givt n a an limage on X.

I sum a = Val X). !mnax a V a x), and~ I min a =A a(x).% EX xEX xEX

l~Irivr tlir~Th-ldmtr is sipp-rtcd In thle Inmage .XLg 4ra thlroin,0i Ihe iuse o c'iruetorms tu

f'm ti- 'us A h:r:itrtfri,,ti- ftiiict)ii Ps : hiwiury operm Kr'n thia* taikes w\o(nm11 e IriiL-it

5

and gives as its result a new image with each pixel having value zero or one. In each of the

characteristic functions defined below, a comparison is made. If the specified comparison is

satisfied at a given pixel location, the result pixel value is one, otherwise the resulting pixel

will have value zero.

Figure 5. Image a

Consider the image a shown in Figure 5, having values from 0 to 31; and the image b

that has value 5 everywhere. Then given the characteristic function > defined as follows

(a>b) = c, where c {(x,c(x)):c(x) = 1 if a(x) > b(x), and 0 otherwise}

We normally represent a constant image having value k everywhere by the constant k.

Hence we could write the characteristic expression above as a>5. Figure 6 shows the result

of a>5 and a>30.

Figure 6. a>5 and a>30

Other characteristic ,unctions supported are =, yielding a one where its left argument and

right argument are equal: !=. yielding one where its arguments are not equal: and >=. <.

and <= yielding ones where the left argument is greater or equal, less, and less or equal.

respectively.

6

3. TEMPLATES AND TEMPLATE OPERATIONS

Image Algebra templates and template operations permit one to use arithmetic/logic

combinations of groups of pixel values in a source image to compute new values in a result

image. Local neighborhood operations like local averaging represent a subset of the possible

template operations.

An Image Algebra template is a function assigning to each coordinate in a result image

over coordinate set Y, an image over a source coordinate set X. We call such a function a

template from Y into X. If a template t is a template from Y into X, then we denote the

image over X assigned to particular location y ty.

Given an image ty, some pixels may have the value zero. In practice, most of the pixel

values are zero in an image defined by a template. The non-zero portion of the image

assigned ty is called the configuration of the template at y. The configuration of a template

image t., also called the support of the image, is denoted S(t.). This is shown in the case of

a template assigning an image on coordinate set X to each coordinate in a image over coordi-

nate set Y. This is shown pictorially in Figure 7.

target pixel y onfiguration

Target Coordinate Set Y Source Coordinate Set X

Figure 7. A pictorial example of a template from Y to X.

A special class of templates are said to be translation invariant. A template is transla-

tion invariant whenever tY(x) = tY+(x+z). Stated in words, a template is translation invari-

ant whenever given an' two coordinates y1 and y2, where Y2 = Y1+z, the translation through

vector z of the image t., is identically the image t,. Such a template can be described by a

single image that can be translated in the source coordinate set to describe every other tar-

get coordinate's configuration.

7

When a template is translation invariant, we draw its configuration by representing

pixel locations in the configuration as boxes containing weights and denoting the target pixel

location by shading the corners of its box. For example, given a two dimensional coordinate

set and an arbitrary coordinate point y = (yl,y2), then Figure 8 represents the template t,

where

t(yj,,2)((y 1 , Y2)) = 1

t(P1 2)((Yl-1,Y2)) = 2

t(1 py 2)((Yl, Y2+1)) = 3

It (1P2)((y 1 + 1 , Y2)) = 4

t(vy(y 1 , Y2-1)) = 5

2

5 1 3

4

Figure 8. A translation invariant template

Note that in the above example we use matrix relative coordinate positioning. That is,

the first coordinate of a coordinate pair describes row position and increases downward; the

second coordinate describes column position and increases to the right. We use this conven-

tion throughout the document and in the Image Algebra FORTRAN preprocessor.

There are three basic template operations in the Image Algebra: generalized convolu-

tion (with mnemonic !gcon), multiplicative maximum (!mmax) multiplicative minimum

(!mmin) , additive maximum (! amax), and additive minimum (! anin). Generalized con-

volution takes as its arguments an image and a template. Let t be a template from Y to X

and a an image on X. The convolution of image a with template t is defined to be

a !gcon t = c, where c(y) = E a(x)*t,(x)
xEX

This definition says that in the image c. any pixel y gets its value by taking the image

ty. multiplying it by the image a, and then summing all the pixel values. Notice that at

points x outside the configuration of ty the values of t,(x) are all zero. so if we let S(ty

deiote the configuration of t then we can also define this template operation as

8

a !gcon t = c, where c(y) Z a(x)*t'(x)

xE 3(t')

To describe the application of template operations, we apply the generalized convolution

operation to the image of Figure 5 and the translation invariant template of Figure 9. This

template will weight each pixel in the cross shaped neighborhood around a pixel by value

1 5. When the template operation is performed, the resultant pixels will have values

representing neighborhood or local averages of the surrounding pixel values. The result is

shown in Figure 10.

1 ,/5

1/5 1//5 1/5

1/5

Figure 9. Averaging template tag

Figure 10. Image a and the result of a gcon t,,g

Translation variant templates are those in which the configurations and weights at a
given point are not rigidly translated from point to point. Consider the problem of shrinking

an image, that is, making it fit into a smaller coordinate set. Suppose we know that image a

of Figure 5 is defined on the coordinate set X = {(x, x.)" x1, x.E[0, *63}}. and we wish

to shrink this image by averaging neighboring pixels to fit into the coordinate set

9

Y = 1(yl. y,)'yl,y..E{0, 31}} We might use a template s defined at point y =(y, Y2)

as follows:

sy(2*yl, 2*y2) = 1/4,
sy(2 *yl+l, 2*y2) = 1/4,

sY(2*yl, 2*Y2+1) = 1/4, and

sy(2*yl+l, 2*y 2+1) = 1/4.

The result of this template operation is shown in Figure 11. Note that it is impossible

to draw a single picture characterizing the relationship between the target pixel and its

configuration in s. To illustrate this, consider the configurations for target coordinates (5, 5)

and (6, 6). For target pixel (5, 5), the configuration is the set {(10,10), (10,11), (11,10),

(11,11)}, whereas target pixel (6,6) has configuration, {(12,12), (12,13), (13,12), (13,13)}. The

configuration for (6,6) is not a translation of the configuration (5,5) through vector (6,6)-
(5,5).

Figure 11. a!gcons

The other image template operations use maximum and minimum operations. Just as

zero is the identity with respect to addition, -cc is the identity with respect to maximum

and oc is the identity with respect to minimum. Hence instead of defining the configuration

of a template with respect to that portion of the image not containing the value zero, we

define the configurations with the function S,(t,) which represents the coordinate set on

which t, does not take on either the value oo or --. Formally defined,

S.(tY) = {X : t' (x) {00' 'Cc}} In practice, since the values oc and -cc cannot be

represented numerically, the Image Algebra FORTRAN preprocessor never actually stores

these values. It only stores the values of pixels within the configuration of a template. With

10

this in mind, we define the rest of the image template operations as follows:

a !mmaxt = c, where c(y) = V a(x)*t,(x)
xE S4t,)

a !mmint =c, where c(y) = A a(x)*ty(x)
xES~(t,,

a !amaxt = c, where c(y) = V a(x)-t,(x)
xE S.Jt,)

a amint = c, where c(y) = A a(x)+t,(x)
xEs4

Section IHi of this document shows several complete Image Algebra FORTRAN pro-

grams and discusses some other template definitions and their uses.

4. CORRESPONDENCE OF SYMBOLS TO MNEMONICS

The following tables show the correspondence between standard Image Algebra opera-

tion symbols and Image Algebra FORTRAN mnemonic symbols.

Table 1. UNARY OPERATIONS SYMBOLS AND MNEMONICS

Operation Name Standard Image Algebra Symbol IAF Operation Symbol

Negation

Sum 'sum
Maximum V !max

Table 2. BINARY OPERATION SYMBOLS AND MNEMONICS

Operation Name Standard Image Algebra Symbol TAF Operation Symbol

Addition + +
Multiplication •
Maximum V !max
Minimum A min
Exponentiation ** **

Dot Product * Idot

11

Table 3. CHARACTERISTIC FUNCTION SYMBOLS AND MNEMONICS

Characteristic Function IAF Representation

X-ba a b

X,0ba a! b

X>ba a > b

,(ba a >= b

X<ba a< b

X<ba a<= b

Table 4. IMAGE TEIPLATE OPERATION SYMBOLS AND MNEMONICS

Operation Name Standard Image Algebra Symbol TAF Operation Symbol
generalized convolution e fgcon
additive maximum !0 !amax
additive minimum !amin
multiplicative maximum !mmax
multiplicative minimum D !mmin

12

SECTION III

1IMAGE ALGEBRA EXTENSIONS TO FORTRAN 77

Image Algebra FORTRAN (IAF) is an extension of the ANSI Standard FORTRAN 77

programming language (ANSI X3.9-1978). More specifically, the IAF language is a composite

of ANSI Standard FORTRAN 77 and a significant subset of the Image Algebra. The lexical,

syntactic, and semantic aspects of LAF that support the Image Algebra extensions are defined

in this section. Concrete examples of the use of IAF are given in the next section. It is

assumed that the reader is familiar with both FORTRAN 77 and the Image Algebra.

The authors have implemented a preprocessor for TAF that translates IAF source code

into semantically equivalent FORTRAN 77 code. This manual describes that implementa-

tion of LAF. The definition of IAF presented here is intended to coincide as closely as possi-

ble to the current preprocessor implementation. Any apparent discrepancy between the

behavior of the preprocessor and the meaning ascribed to IAF in this document should be

reported to the authors. The preprocessor was written in strict conformance to ANSI Stan-

dard FORTRAN 77 making the tool particularly suitable for single-language environments

as well as making it easily portable.

1. OVERVIEW

Two principal features distinguish Image Algebra FORTRAN from FORTRAN 77.

First, L-F supports the relatively unconstrained use of images as operands in arbitrary arith-

metic expressions and as targets of arithmetic assignments. Indeed, any programming

language that purports to support image processing applications must allow for images to be

used as indivisible entities. In [AF, an image is simply a programmer-defined FORTRAN 77

array. Second, LAF supports Image Algebra templates which can be used to effect a virtually

limitless variety of image transformations. [AF templates are defined by the programmer in

a new kind of program unit designed specifically for that purpose. The definition of a tem-

plate is syntactically very similar to the definition of a FUNCTION in a FORTRAN 77 pro-

gram. Similarly, a reference to a template in an IAF arithmetic expression is syntactically

identical to a reference to a FUNCTION or simple variable in a FORTRAN 77 expression.

The L\F language is most notably differentiated from the FORTRA 77 ',,aguabc 1y (i) its

considerably richer arithmetic expressions, (ii) a more general arithmetic assignment state-

ment, and (iii) the support of Image Algebra templates. The LF language is described in

13

order of the following topics: (i) arithmetic operands, (ii) arithmetic operators, (iii) templates

and template operators, (iv) IAF expressions and their use, and (v) exceptions and restric-

tions.

2. \IAGE ALGEBRA FORTRAN OPERANDS

In FORTRAN 77, a primary in an arithmetic expression can be one of the following: (i)

an unsigned arithmetic constant, (ii) a symbolic name of an arithmetic constant (i.e., defined

in a PARAMETER statement), (iii) an arithmetic variable reference, (iv) an arithmetic array

element reference, (v) an arithmetic function reference, or (vi) an arithmetic expression

enclosed in parentheses. Furthermore, in FORTRAN 77 all arithmetic primaries represent

scalar values and all arithmetic expressions produce scalar results. In IAF, the unsubscripted

name of a user-defined array can also be used as a primary in an arithmetic expression. The

appcarance of an unsubscripted array name within an arithmetic expression denotes its use

as an image. Thus, an arithmetic primary in an IAF arithmetic expression may represent

either a scalar value or an image value. Furthermore, IAF arithmetic expressions can pro-

duce scalar results or image results.

The terms array and image are used throughout this manual. To avoid possible confu-

sion, a consistent use of these two terms is applied as follows. The term array is used in

reference to a FORTRAN 77 array that does not explicitly involve any of the Image Algebra

extensions of IAF. The term image is used explicitly in the context of the Image Algebra

extensions. Note that the term array has meaning in the context of both FORTRAN 77 and

JAF whereas the term image has meaning only in the context of IAF.

a. Arrays as Images

Images are the prototypical operands of IAF expressions. A user-defined LAF image

is simply a FORTRAN 77 array to which certain restrictions apply. An JAF image is

declared with exactly the same syntax that is used for declaring a FORTRAN 77 array. An

LAF image is referenced in an arithmetic expression by using the unsubscripted name of the

image as a primary in an arithmetic expression. In addition, the unsubscripted name of an

LAF image may appear alone on the left-hand side of the '=' symbol in an arithmetic assign-

ment statement.

Not all FORTRAN 77 arrays are valid for ue as IAF images. The following res-

trictions are imposed on IAF images.

14

The valid data types for IAF images are INTEGER, REAL, DOUBLE PRECISION,

and COMPLEX.

* Every LAF image must be declared with exactly two-dimensions.

* All expressions that declare the dimension bounds in the declaration of an image

must be constant INTEGER expressions.

The last restriction dictates that the size of all images must be statically determined at com-

pile time. Thus, the use of either an adjustable array (i.e., an array declared with a dimen-

sion bound expression that references an INTEGER variable that is a dummy argument) or

an assumed-size array (i.e., an array declared with '*' as the upper bound of the last dimen-

,ion) a.s ai, L-AF image is prohibited.

An array that is declared in violation of one or more of the above restrictions can

not be used as an LAF image in any context. However, such an array may be used freely

within an IAF program in any manner that conforms with the rules governing the use of

arrays in FORTRAN 77.

The explicit use of an array as an image within an LAF program unit by using the

unsubscripted name of the array either as a primary in an arithmetic expression or as the

target of an arithmetic assignment statement does not preclude the use of that same array in

any manner consistent with FORTRAN 77 in the same TAF expression or in any other arith-

metic expression in the same program unit.

In compliance with the rules of FORTRAN 77, the declaration of .he dimensions

and bounds of an image may be given in a type-statement, a DIMENSION statement, or a

COMMON statement. The type of an IAF image is determined by exactly the same rules that

determine the type of a FORTRAN 77 array.

In the following fragment of L\F code, all of the array declarations are valid

declarations for LAF images.

INTEGER A(64, 64), B(64. 64), CHAIN(1, 32)
PARAMETER (NROWS=64. NCOLS=64)
COMPLEX CIMAGE(NROWS, NCOLS)
DIMENSION DIMAGE(512, 512)
DOUBLE PRECISION D(0:NROWS/2-1, 0:NCOLS*2-1), DIMAGE
COMMON /COM/ RIMAGE(1024, 1024)

In particular, the declaration of CHAIN above illustrates the point that a two-dimensional

array that is declared such that one of the dimensions has a size of I is a valid .AF image.

15

In contrast to the preceding array declarations, none of the arrays declared in the

next fragment of L-F code are valid IAF images. However, they are valid LAF array declara-

tions because they are valid FORTRAN 77 array declarations.

SUBROUTINE SUBR (W, X, M, N)
REAL V(32, 32, 32. 32, 32, 32, 32)
INTEGER W(M*2, N*2)
COMPLEX X(512, *)
INTEGER Y (256)
LOGICAL Z(64, 64)

In summary, all valid FORTRAN 77 arrays are also valid IAF arrays. However, only a sub-

set of the valid FORTRAN 77 arrays are valid IAF images.

(1) Image Coordinate Sets

Every LAF image possesses a property known as its coordinate set. The coor-

dinate set of a user-defined image is the dimension bounds of the underlying array. Thus, the

coordinate set of a user-defined image is obtained directly from the array declarator used to

declare the image. Every operation involving images possesses a manifest coordinate set.

The manifest coordinate set of an operation involving one or more image operands plays a

key role in defining and verifying the semantics of the operation. In particular, the manifest

coordinate set of a given image operation is used as described below.

" If the underlying operation involves two or more image operands, then the manifest

coordinate set of the operation is used to verify that the several images involved

have compatible coordinate-sets.

* If the underlying operation dictates that an image is produced as a result, then the

manifest coordinate set determines the coordinate set of the result image.

The operations involving images for which manifest coordinate sets are

relevant are categorized listed below.

(1) Unary arithmetic operations in which the operand is an image or an arithmetic

expression that produces an image result.

(2) Binary arithmetic operations (excluding image-template operations) in which at

least one of the two operands is an image or an arithmetic expression that produces

an image result.

16

(3) Image-template operations.

(4) Arithmetic assignment operations in which the left-hand side is a user-defined

image.

(5) Arithmetic function references having at lea.,t one actual argument that (i) is an

image or an arithmetic expression that produces an image result and. (ii) is

prepended with the '@' symbol.

(6) Arithmetic array element references having at least one indexing expression that (i)

is an image or an arithmetic expression that produces an image result and, (ii) is

prepended with the '@' symbol.

The semantic issues concerning image coordinate sets in general, and manifest coordinate

sets in particular. are discussed as the various LAF operations are described.

b. Scalars as Images

In certain contexts within TAF arithmetic expressions and arithmetic assignment

statements, a scalar value is interpreted as an image. In cases where such an interpretation

arises, the image is referred to as an implicit image. It is emphasized that any arbitrary

expression that produces a scalar result is eligible for interpretation as an implicit image. It

is the specific context in which a scalar expression occurs which dictates whether or not it

denotes an implicit image.

There are two ways in which a scalar value can assume the identity of an implicit

image. The most common situation in which this occurs is in the context of a binary arith-

metic operation in which one of the operands is an image valued expression and t_, -ther

operand is a scalar valued expression. In this case, the scalar operand is interpreted as a uni-

form implicit image having the same coordinate set as the actual image operand. The value

of eat:, pixel of this implicit image is equal to the value of the scalar op(rand. The arith-

metic operation is carried out between the actual image operand and the implicit image

operand in accordance with the definition of the particular operation in the Image Algebra.

The second way in which a scalar value denotes an implicit image is in th , context

of an arithmetic assignment statement. Specifically, if the expression on the right-hand side

of the '=' symbol produces a scalar result and the left-hand side is an image, then the scalar

value produced by thp ,xpression is interpreted as a uniform implicit image (i) with the same

coordinate set as the actual image, and (ii) with the value of each pixel equal to the scalar

17

value. The effect of an arithmetic assignment statement of this form is for the implicit image

to be assigned to the actual image in accordance with the rules of the Image Algebra. In par-

ticular, every pixel in the actual image is assigned the value of the corresponding pixel in the

implicit image.

c. Arithmetic Function References

A reference to an arithmetic FUNCTION within an arithmetic expression of a FOR-

TRAN"! 77 program always returns a scalar result. In IAF, a reference to an arithmetic

FUNCTION within an arithmetic expression can also return an image result. This is effected

by indicating, using an appropriate syntax, that the function is to be applied to one or more

images in a point-wise fashion. The second example program of Section IV shows how this

program construct is used.

A reference to an arithmetic function denotes an image (i.e., returns an image

result) if all of the conditions listed below are satisfied.

* The function reference contains at least one actual argument.

* At least one of the actual arguments in the reference to the function is an image or

an arithmetic expression that produces an image result. Such an actual argument

is called an image actual argument.

* At least one of the image actual arguments in the reference to the function is

prepended with the *' symbol. This denotes the intention that the function is to

be applied in a point-wise fashion to the image.

* For every image actual argument that is prepended with the -@' symbol, the

corresponding dummy argument in the definition of the function is a scalar

variable.

Only image actual arguments can be propended with the '@' symbol. In particular, it is

invalid to prepend an actual argument that is a scalar or an arithmetic expression that pro-

duces a scalar result with the -1a symbol.

An arithmetic function reference that denotes an image based on the above criteria

Is referred to Ls a point-wise function reference. A point-wise function reference can idetify

an INTRINSIC arithmetic function or a user-defined or library-supplied EXTERNAL arith-

rn.t iC I'lln,1Ct VIf Note tIat a point-wise function reftrence ran identify a function elither by

Ow name that :,pp.ears in a FUNCTION statement or b0y the name that appears in an ENTRY

18

statement within a FUNCTION subprogram. The number, order and type of the actual argu-

ments in a point-wise function reference must be in agreement with the number, order and

type of the dummy arguments in the respective FUNCTION statement or ENTRY statement.

A point-vise function reference possesses a manifest coordinate set. The manifest

coordinate set of a point-wise function reference is used to establish the compatibility of the

image actual arguments and to determine the coordinate set of the result image. The mani-

fest coordinate set of a point-wise function reference is the coordinate set of the image actual

argument that occurs leftmost in the list of actua! arguments of the point-wise function refer-

ence. It is required that the coordinate-set of every image actual argument of a point-wise

function reference be the same as the manifest coordinate set.

The image that results from a point-wise function reference satisfies the conditiolib

listed below.

* The coordinate set of the result image is the same as the manifest coordinate set of

the point-wise function reference.

* The type of the result image is determined by the type of the scalar result that is

returned by the function.

* The value of each pixel in the result image is determined by the value that is

returned by the function when it is applied to the corresponding pixels of the image

actual arguments that are prepended with the '@' symbol together with all of the

other actual arguments.

If the name used to reference the function is the same as the generic name of a FORTRAN

77 INTRINSIC function. then the type of the result image is determined in the same way

FORTRAN 77 determines the type returned by a generic INTRINSIC function.

Specifically. the type(s) of the actual argument(s) in the point-wise function reference deter-

mine the type of the result returned by the function.

A point-wise function reference, in addition to one or more image actual arguments.

may have zero or more actual arguments that are not prepended with the '@" symbol. Any

sue'h actul arzument that is a syntactically and semantically valid FORTRAN 77 actual

argument I. also a valid I.AF actual argument in a point-wise function reference. Note that

this llows arbitr:irv ex pressioins (including arithmetic, character, relational, and loiical

, r , r:i,'. sil)r,-r:inis. etc. to be used frely :is actual :arvilme .it.s ill p)',iit-wl:-'

19

function references. Furthermore, an arbitrary arithmetic expression that produces an image

result may be used as an actual argument in a point-wise function reference without

prepending it with the '@' symbol. This is equivalent to passing an array to the function

which corresponds to the image that is produced by the expression. Actual arguments that

are not prefixed with the "@' symbol are associated with their corresponding dummy argu-

ments in the definition of the referenced function in the same way in which actual arguments

and dummy arguments are issociated in FORTRAN 77.

d. Arithmetic Array Element References

An arithmetic array element reference within an arithmetic expression in a FOR-

TRAN 77 program always denotes a scalar value. In LA, an arithmetic array element refer-

ence within an arithmetic expression can also denote an image. This functionality is analo-

gous to that provided by point-wise function references. The second example of Section IV

shows how this facility can be used to implement functions via table lookup, yielding faster
execution speed of Image Algebra FORTRAN programs.

An arithmetic array element reference denotes an image if all of the conditions

below are satisfied.

* At least one index expression of the arithmetic array element reference is an image

or an arithmetic expression that produces an image result. Such an index

expression is called an image index expression.

* Every image index expression of the arithmetic array element reference is

prepended with the '@' symbol.

* Every image index expression is of INTEGER type.

* For every image index expression, the value of every pixel of the image produced

by the image index expression lies within the bounds of the dimension of the array

being indexed by that expression.

Only an image index expression can be prepended legitimately with the '@' symbol. In par-

ticular, it is invalid to prepend a scalar index expression with the '@' symbol. With respect

to the last constraint listed above, the preprocessor does not generate code to perform

execution-time boiinds-checking. Furthermore, it is not possible for the preprocessor to per-

form boiirlds-ch,,ek ing at translation time.

20

An arithmetic array element reference with one or more image index expressions is

called an irnage-talue-indexed array reference. The number of index expressions in an
image-value-indexed array reference must be equal to the number of dimensions of the under-

lying array. All of the index expressions in an image-value-indexed array reference must be

integer expressions.

An image-value-indexed array reference possesses a manifest coordinate set. The

manifest coordinate set of an image-value-indexed array reference is used to establish the

compatibility of the image indexing expressions and to determine the coordinate set of the

result image. The manifest coordinate set of an image-value-indexed array reference is the

coordinate set of the image index expression that occurs leftmost in the list of index expres-

sions of the array reference. It is required that the coordinate set of every image index

expression of an image-value-indexed array reference be the same as this manifest coordinate

set.

The image denoted by an image-value-indexed array reference satisfies the condi-

tions listed below.

" The coordinate set of the image is the same as the manifest coordinate set of the

image-value-indexed array reference.

* The type of the result image is the same as the type of the underlying referenced

array.

" The value of each pixel in the result image is determined by the value of the array

element that is indexed by the values of the corresponding pixels of the image

indexing expressions (each necessarily prepended with the '@' symbol) together with

all of the other scalar index expressions.

Thp type of the array named in an image-value-indexed array reference must be a

type that is valid for an image. The array named in an image-value-indexed array reference

may have from one to seven dimensions. Furthermore, the array named in an image-value-

indexed array reference may be an adjustable array or an assumed-size array. An image-

value-indexed array reference cannot appear on the left-hand side of the '=' symbol in an

arithmetic assignment statement.

In essence, an image-value-indexed array reference models a partial function that is

etective, il Ipie me+nted by table look-i p. .lore specilically, the domain of the function is

21

simply the dimension bounds of the underlying array. The domain over which the function is

defined (its effective domain) depends on the values of the index expressions in the image-

value-indexed array reference. The range of the function is determined by the values that

are assigned to the various elements of the underlying array. Therefore, the effective domain

and range are dynamic since they are established at execution-time. In that respect, an

array that is used in an image-value-indexed array reference models a family of partial func-

tions.

It is emphasized that the 'W' symbol can be applied legitimately only to an image

actual argument that occurs in a reference to an arithmetic FUNCTION or to an image index

expression that occurs in an arithmetic array element reference. In that respect, the 'W' sym-

bol is not a new arithmetic operator that can be arbitrarily embedded within an arithmetic

expression as a unary operator. It is more correctly viewed as a directive to the preprocessor

that instructs it to interpret a particular arithmetic function reference or arithmetic array

element reference in a special way.

3. INLkGE ALGEBRA FORTRAN ARITHMETIC OPERATORS

The Image Algebra extensions of LAF only affect arithmetic expressions. In that respect,

the semantics of the FORTRAN 77 arithmetic operators are extended in IAF to support the

use of images as operands. In addition, several new arithmetic operators are available in IAF

that explicitly require at least one image operand. Finally, image-template operations are

incorporated into arithmetic expressions as particularly powerful mechanisms for effecting a

virtually limitless assortment of image transformations.

We first discuss the further overloading of FORTRAN 77 arithmetic operators in LAF.

Next we describe the new arithmetic operators that are peculiar to LAY. Finally, template

declarations, template definitions, and the LXF image-template operators are presented. A

Backus-Naur Form (BNF) grammar which describes the syntax of [AF arithmetic expreF

sions is given in Appendix A.

In the following, a scalar operand is one of the following: (i) an unsigned arithmetic con-

stant. (ii) a symbolic name of an arithmetic constant (i.e., defined in a PARAMETER state-

ment). (iii) an arithmetic variable reference, (iv) an arithmetic array element reference. (v) an

arithmetic function reference, (vi) an arithmetic expression that produces a scalar result, or

(vii) a paronthesized arithmetic expression that produces a scalar result. Xn image operand

is one of the following: (i) an unsubscripted arithmetic array reference, (ii) an arithmetic

22

image-value-indexed array reference, (iii) an arithmetic point-wise function reference, (iv) an

arithmetic expression that, produces an image result, or (v) a parenthesized arithmetic expres-

sion that produces an image result. An arbitrary expression produces a scalar result or an

image result depending on the specific operands and operations involved and the relative pre-

cedence of the operators. Note that the type of each operand of an arithmetic operation

must be one of the built-in FORTRAN 77 arithmetic types (i.e., INTEGER, REAL, DOUBLE

PRECISION, or COMPLEX).

a. FORTRAN 77 Arithmetic Operators

The arithmetic operators that are native to FORTRAN 77 are exponentiation '*',

division '/', multiplication '*', binary subtraction and unary negation '-', and binary addition

and unary identity '+'. In FORTRAN 77, all of these operators require scalar operands and

produce scalar results. In IAF, the native FORTRAN 77 unary operators can operate on

either a scalar or an image operand, whereas the native FORTRAN 77 binary operators can

operate on any combination of two scalar and image operands. Accordingly, in TAF these

arithmetic operators can produce either scalar or image results depending on the operands

that they are applied to.

(1) Unary Operators

The unary arithmetic operators that are native to FORTRAN 77 are negation

'-' and identity '+'. The unary '-' and '+' operators can be applied to either scalar operands

or image operands.

The semantics of the IAF negation operator '-' applied to a scalar operand are

exactly the same as the semantics of the FORTRAN 77 negation operator.

When the negation operator is applied to an image operand, the result of the

operation is an image. The manifest coordinate set of a unary negation operation that has

an image operand is the coordinate set of the image operand. The coordinate set of the

result image is the same as the manifest coordinate set of the operation. The type of the

result image is the same as the type of the image operand. The effect of the negation opera-

tor is to negate the value of each pixel of the image operand.

The LAF identity operator '+' is treated as a null operation, regardless of

whether the single operand involved is a scalar operand or an image operand. More

specifically, the unary +" has no effect on its single operand.

23

(2) Binary Operators

The binary arithmetic operators that are native to FORTRAN 77 are

exponentiation **', division '', multiplication '*', subtraction '-', and addition '+'. In IAF,

these binary operators can be applied to any combination of two arithmetic scalar and image

operands. In the following, "bop" is used to denote any one of the five binary arithmetic

operators Y, '-', or 4+'.

If the two operands of a "bop" operator are both scalar operands, then the

semantics of the corresponding operation are exactly the same as the semantics of the opera-

tion in FORTRAN 77.

If a "bop" operator has one image operand and one scalar operand, then the

scalar operand is treated as an implicit image. The result of a "bop" operation with one

image operand and one scalar operand is an image. The manifest coordinate set of the "bop"

operation is the coordinate set of the image operand. The coordinate set of the implicit
image is the same as the manifest coordinate set of the operation. The coordinate set of the

result image is the same as the manifest coordinate set of the operation.

If both operands of a "bop" operation are images, then the result of the opera-

tion is an image. The manifest coordinate set of the "bop" operation is the coordinate set of

the left image operand. The coordinate set of the right image operand must be the same as

the manifest coordinate set of the operation. The coordinate set of the result image is the

same as the manifest coordinate set of the operation.

Regardless of whether a "bop" operator has one or two image operands, the

operation is performed as if both operands are images since a scalar operand that accom-

panies an image operand is promoted to an image (albeit, an implicit image) with the same

coordinate set as the image operand. The result image is constructed by applying the "bop"

operator to the two image operands in a pixel-wise fashion. More specifically, the value of

each pixel in the result image is determined from the result of the "bop" operation applied to

the corresponding pixels of the images that constitute the left and right operands.

Regardless of whether a "bop" operator has one or two image operands, the

type of the image result that is produced by the operation is determined by the same rules

that are used in FORTRAN 77 for determining the result type of a "bop" operation that has

two scalar operands. Thus, the type of the result image is determined as if both operands

were scalar operands.

24

The definition of the exponentiation '**' operator in IAF departs slightly from

its definition in FORTRAN 77. In FORTRAN 77 Ok is undefined for all k < 0, however, we

give such expressions a meaning in [AF. In LAF, the following rules define the exponentiation

operator: for arbitrary scalar operand a, a° = 1 if and only if a - 0; if a = 0, then the opera-

tion a° is undefined; and for arbitrary scalar operand k, Ok = 0 for all k $ 0. These rules for

exponentiation extend readily to image operands.

b. Additional IAF Arithmetic Operators

In addition to the arithmetic operators that are native to FORTRAN 77, several

other arithmetic operators are provided in IAF. In particular, four new unary arithmetic

operators, three new binary arithmetic operators, and six characteristic function operators

are available in LAkF. Each of these operators require at least one image operand. The unary

operators are discussed first, followed by the binary operators and the characteristic function

operators.

(1) Unary Image Operators

The four unary arithmetic operators that are unique to IAF are image pseudo-

inverse '! Inv', image maximum '!max', image minimum '!min', and image sum '!sum'.

The single arithmetic operand of each of these operators must be an image.

The unary '!Inv' operator implements the Image Algebra pseudo-inverse

operation. When the 'nv' operator is applied to an image operand, the result of the opera-

tion is another image. The type of the result image is the same as the type of the image

operand. The coordinate set of the result image is the same as the coordinate set of the

image operand. The effect of the ' ! lnv' operator is to compute the pseudo-inverse of the

image operand. The pseudo inverse of an image a is defined as ! inva =_ a**-I.

The unary '!max' operator implements the Image Algebra unary image-

maximum operation (V). When the '!max' operator is applied to an image operand. the

result of the operation is a scalar value. The type of the scalar result is the same as the type

of the image operand. The '!max' operator produces the value of the pixel in the image

operand that has the greatest value. The unary '!max' operator cannot be applied to a

C0PLED image.

The unary !min operator implements the Image Algebra unary image-

minimum operation (A). When the *!mln' operator is applied to an image operand, the

25

result of the operation is a scalar value. The type of the scalar result is the same as the type

of the image operand. The '!min' operator produces the value of the pixel in the image

operand that has the least value. The unary '!min' operator cannot be applied to a COM-

PLEX image.

The unary '! sum' operator implements the Image Algebra unary image-sum

operation (E). When the '! sum' operator is applied to an image operand, the result of the

operation is a scalar value. The type of the scalar result is the same as the type of the image

operand. The '! sum' operator produces the scalar quantity that is obtained from adding the

values of all of the pixels in the image operand.

(2) Binary Image-Image Operators

The three binary arithmetic operators that are unique to IAF are image dot-

product '!dot', binary image-maximum '!max', and binary image-minimum '!min'. At

least one of the operands of each of these operators must be an image.

If exactly one of the operands of a '!dot', binary '!max', or binary '!min'

operator is an image and the other is a scalar, then the scalar operand is treated as an impli-

cit image. The manifest coordinate set of the operation is the coordinate set of the image

operand. The coordinate set of the implicit image is the same as the manifest coordinate set

of the operation.

If both operands of a '!dot', binary '!max', or binary '!min' operator are

images, then the manifest coordinateset of the operation is the coordinate set of the left

image operand. The coordinate set of the right image operand must be the same as the man-

ifest coordinate set of the operation.

Regardless of whether a '!dot', binary '!max', or binary '!min' operator has

one or two image operands, the operation is performed as if both operands are images since a

scalar operand that accompanies an image operand is promoted to an image with the same

coordinate set as the image operand.

The type of the result of a '! dot', binary '! max', or binary ' mln operation is

determined as if the two operands were sirrple scalar variables and the operator was

replaced by any one of the FORTRAN 77 binary arithmetic operators 'I' *', '-, or

The result of the '! dot' operation is a scalar value. The scalar quantity is

produced by effecting the Image Algebra dot-product operation on the two image operands.

26

The result of a binary '!max' or binary '!mln' operation is an image. The

coordinate set of the image result is the same as the manifest coordinate set of the operation.

For the binary " !max' (resp. '!min') operation, the value of each pixel in the result image is

set to the maximum (resp. minimum) of the two corresponding pixels in the operand images.

(3) Characteristic-F unction Operators

The six binary characteristic-function operators available in LAF are '<' (less

than), '<=' (less than or equal to), ' ' (equal to), '!=' (not equal to), '>' (greater than), and

.>=' (greater than or equal to). The '<' (resp. '<=', '', '!=, '>', >=') operator implements

the Image Algebra X< (resp. X<, , X>, xY>) operation. At least one of the operands of

each of these operators must be an image.

If exactly one of the operands of a characteristic-function operator is an image

and the other is a scalar, then the scalar operand is treated as an implicit image. The mani-

fest coordinate set of the operation is the coordinate set of the image operand. The coordi-

nate set of the implicit image is the same as the manifest coordinate set of the operation.

If both operands of a characteristic-function operator are images, then the

manifest coordinate set of the operation is the coordinate set of the left image operand. The

coordinate set of the right image operand must be the same as the manifest coordinate set of

the operation.

Regardless of whether a characteristic-function operator has on', or two image

operands, the operation is performed as if both operands are images since a scalar operand

that accompanies an image operand is effectively "promoted" to an image with the same

coordinate set as the image operand.

The result of every characteristic-function operation is an image of INTEGER

type. The coordinate set of the image result is the same as the manifest coordinate set of the

operation. With respect to the '<' (resp. <', '', , ">', ">) characteristic-function

operation, each pixel in the result image for which the values of the corresponding pixels in

the two image operands are related by the '<' (resp. '<-', '<', 4!>', '>, > =') relation is

set to one. All of the other pixels in the result image are set to zero.

Neither of the two operands of a characteristic-function operator can be of

COMPLEX type.

27

4. TEMPLATES

In terms of image processing applications, templates and image-template operations are

the most powerful tools of IAF. The functionality provided by Image Algebra templates is

implemented in IAF by a combination of template declarations, template definitions, and

image-template operations. A template is declared in a template declaration statement. A

template declaration statement is a nonexecutable statement that is unique to IAF and has

no counterpart in FORTRAN 77. A template is defined in a template definition. A tem-

plate definition is a new kind of program unit that is syntactically similar to a FUNCTION

definition. A template is referenced in an image-template operation that can occur in an

arbitrary arithmetic expression. Template declarations are discussed first, followed by tem-

plate definitions and image-template operations.

a. Template Declarations

Every template referenced in an image-template operation in a program unit must

be declared within that same program unit. There are two basic kinds of templates,

translation-invariant templates and translation-variant templates. Consequently, the tem-

plate declaration statement has two basic forms. The syntax of AF template declaration

statements are illustrated as follows.

[type-specifier] INVARIANT IDENT [, IDENT ...

Ltype-specifier] VARIANT IDENT [, IDENT ...]

A template declaration statement consists of an optional type specifier, followed by one of

the keywords INVARIANT or VARIANT, followed by a list of one or more identifiers

separated by commas. Each identifier appearing in a template declaration statement is the

name of a template that may be referenced subsequently in an image-template operation

within the same program unit. The following code fragment illustrates the declaration of

four templates.

INTEGER INVARIANT sobel
VARIANT avgl. avg2, avg3

A template can be declared in a template declaration statement at most once in a

program unit. An identifier that is declared as the name of a template in a template declara-

tion statement cannot appear in any other declaration statement within the same program

1l1ilt.

28

The valid template types are INTEGER, REAL, DOUBLE PRECISION, and COM-

PLEX. In the absence of an explicit type specification for a template, the usual FORTRAN

77 rules for implicit typing apply. In particular, a type specifier is used in a template

declaration statement to confirm or override the implicit type for the template names that

appear in the statement. The type of a template cannot be specified in a separate type-

statement. The type given to a template (either explicitly or implicitly) in a template

declaration statement must be the same as the type given to the template (either explicitly

or implicitly) in its definition.

A template declaration statement is nonexecutable. All template declarations in a

program unit must occur before the first executable statement of the program unit. The

declaration of a template within a program unit in which the template is not referenced in

any image-template operation within an arithmetic expression has no affect.

b. Template Definitions

Every template that is referenced in an image-template operation within an execut-

able program must have a corresponding template definition. A new kind of program unit is

available in LAF for the express purpose of defining templates. The program units that are

used to define templates are known as template definitions. As is the case for the types of

program units that are standard to FORTRAN 77 (e.g., FUNCTION subprograms, SUBROU-

TINE subprograms, etc.), template definitions can be compiled separately from the other pro-

gram units that comprise an executable program in which they are used Thus, archived

libraries of templates can be conveniently created.

An LXF template definition is syntactically quite similar to the definition of a

FUNCTION in FORTRAN 77. The first statement of a template definition must be a TEM-

PLATE statement and the last statement of a template definition must be an END statement.

Between the leading TEMPLATE statement and the trailing END statement, is a sequence of

FORTRAN 77 statern ,, and template-weight assignment statements.

The TEMPLATE statement of a template definition identifies the name of the tem-

plate and the template dummy arguments, if any. In addition, the type of the template may

be optionally specified. The identifier that names a template in a TEMPLATE statement is

the same name that is used to reference the template in image-template operations that

occur in arithmptic expressions in other program units of the executable program. The syn-

tax of an lAF TEMPLATE statement is shown here.

29

[type-specifier TEMPLATE IDENT ([dummy arguments)

A TEMPLATE statement consists of an optional type specifier, followed by the keyword TEM-

PLATE, followed by the identifier that names the template, followed by a parenthesized list

of template dummy arguments.

The name of a template that is given in the TEMPLATE statement cannot be the

same as the name of a FUNCTION or SUBROUTINE, or the same as the name of an ENTRY

within the definition of a FUNCTION or SUBROUTINE within the same executable program.

However, the name of a template can be used as the name of a variable, array, statement

function, or symbolic name of a constant within another program unit of the executable pro-

gram in which it is not referenced as a template in an image-template operation.

The valid template types are INTEGER, REAL, DOUBLE PRECISION, and COM-

PLEX. In the absence of an explicit type specification for a template, the usual FORTRAN

77 rules for implicit typing apply. In particular, a type specifier is used in a template

definition statement to confirm or override the implicit type of the template. The type of a.

template cannot be specified in a separate type-statement within the body of the template

definition.

A TEMPLATE statement may specify zero or more dummy arguments. The rules

for the specification of dummy arguments and their subsequent optional declaration are the

same as those which apply to the specification and optional declaration of dummy arguments

within a FORTRAN 77 FUNCTION definition.

The statements that occur between the leading TEMPLATE statement and the trail-

ing END statement of a template definition constitute the body of the template definition.

The body of a template definition consists of an arbitrary number of FORTRAN 77 state-

ments and one or more template-weight assignment statements. A template-weight assign-

ment statement is a particular kind of assignment statement that is peculiar to LAF template

definitions. Template-weight assignment statements are described shortly.

Aside from the noted exceptions, any valid FORTRAN 77 statement may occur

within the body of a template definition. The following FORTRAN 77 statements cannot

occur within the body of a template definition.

* A PROGRAM statement,

30

* a BLOCK DATA statement,

* a SUBROUTINE statement,

0 a FUNCTION statement,

* ENTRY statement, or

* END statement.

None of the FORTRAN 77 statements occurring in the body of a template definition can

make use of the Image Algebra extensions to IAF arithmetic expressions. A template

definition cannot contain a template declaration statement or a TEMPLATE statement.

A template-weight assignment statement is a special kind of assignment statement

that is peculiar to the definitions -f templates in IAF. A template-weight assignment state-

ment is an executable statement. A template-weight assignment statement consists of a sub-

scripted reference to the template on the left-hand side of an '=' symbol and an arbitrary

FORTRAN 77 arithmetic expression on the right-hand side. The left-hand side of a

template-weight assignment statement is syntactically identical to an array element reference

with two indexing expressions. The left-hand side of a template-weight assignment state-

ment corresponds to a particular point in the configuration of the template. The expression

on the right-hand side denotes the weight that is to be assigned to that point in the

configuration of the template.

At the time of an image-template operation, the left-hand side of a template-"'eight

assignment statement within the relevant template definition denotes a particular point in

the source image of the image-template operation. Similarly, the expression on the right-

hand side is the weight that becomes associated with that point. This point in the source

image point is typically specified by suitable offsets with respect to the target pixel in the tar-

get image of the image-template operation. The INTEGER identifiers 'Y1' and 'Y2' are

pseudo-variables that have special meaning within template definitions. Specifically, 'Y1' and

'Y2' index the target pixel in the target image of an image-template operation. The variable

'Yi' corresponds to the row coordinate of the target pixel and 'Y2' the column coordinate.

The indexing expressions in the left-hand side of a template-weight assignment statement

may be cast in terms of these pseudo-variables to establish an association between a point in

the source image and the target pixel in the target image

31

It is prohibited for the weight associated with a particular point in the source image

to be specified in more than one template-weight assignment stauement in the body of a tem-

plate definition. The values of "Y1' and 'Y2' cannot be modified within a template definition

either within an arithmetic assignment statement or as the side effect of a SUBROUTINE or

FUNCTION reference. The arithmetic expression on the right-hand side of a template-weight

assignment statement cannot make use of any of the Image Algebra extensions of LAF arith-

metic expressions. The type of the result of the expression on the right-hand side must be

assignment-compatible with the type of the template. The pseudo-identifiers 'Y1' and 'Y2'

must not be declared in a type statement in a template definition. Suitable declarations for

them are supplied by the preprocessor. If redundant declarations for them are mistakenly

supplied by the user, such definitions will conflict with those that are automatically supplied

by the preprocessor.

c. Image-Template Operators

There are five image-template operators available in LAF. These operators are gen-

eralized convolution '! gcon', additive maximum '! amax', additive minimum '! amin', multi-

plicative maximum '!mmax', ind multiplicative minimum '!retLn'. The '!gcon' (resp.

* 'amax', '! amin', '! mmax', '! emin') operator implements the Image Algebra & (resp. M,

0, (, D) operation. The left operand of each of these operators must be an image. The

right operand of each of these operators must be a valid reference to a template. The tem-

plate that is referenced in an image-template operation must be declared in a template

declaration statement in the program unit in which the operation occurs.

An image-template operation has a manifest coordinate set. If the image-template

operation appears in the context of an arithmetic expression that appears on the right-hand

side of the '=' symbol of an arithmetic assignment statement and the left-hand side is an

image, then the manifest coordinate set of the image-template operation is the coordinate set

of the image on the left-hand side. If an image-template operation appears in any other con-

text, then the manifest coordinate set of the operation is the coordinate set of the image that

is the left operand of the image-template operation.

A reference to a template in an image-template operation is syntactically similar to

a reference to a FUNCTION or variable. If the template that is referenced in an image-

template operation is defined with no template dummy arguments, then the template refer-

,nce may either consist of (i) the name of the template. or (ii) the name of the template

32

followed by an empty pair of matching parentheses. If the template that is referenced in an

image-template operation is defined with one or more template dummy arguments. then the

template reference must consist of the name of the template followed by a parenthesized list

of actual template arguments. The actual template arguments that are supplied in the tem-

plate reference must agree in order, number, and type with the template dummy arguments

that are specified in the template definition. Any argument that constitutes a valid FOR-

TRAN 77 FUNCTION actual argument is also a valid template actual argument. Note that

this includes using the names of subprograms and arrays as template actual arguments.

However, an arithmetic expression that occurs in a template actual argument cannot contain

any of the Image Algebra extensions of L-F arithmetic expressions. Furthermore, a template

cannot be passed to a template as an actual argument in a template reference.

The result of an image-template operation is an image. The coordinate set of the

result image is the manifest coordinate set of the operation. The type of the result of an

image-template operation is determined as if the two operands were simple scalar variables

and the image-template operator was replaced by any one of the FORTRAN 77 binary

arithmetic operators 1', '*, '-', or

5. M-L.-GE ALGEBRA EXPRESSIONS AND THEIR USE

Table 5 gives the precedence hierarchy of the entire set of LAYF operators. Unless indi-

cated to the contrary, an operator represents a binary operation. Operators that are expli-

citly superscripted with a I (resp. 2) denote unary (resp. binary) operations.

33

Table 5. IAF OPERATOR PRECEDENCE HIERARCHY

Precedence of TAF Operators
** (Highest)

!gcon !amax !amin !mmax !mmin
* /

dot max2 !m2in 2

+1,2 -,2 !linvl !max' Imin i 'sumi //
< <= -- ! = > >=

.LT. .LE.. EQ.. NE. . GT. GE.
.NOT.'
•AND.

.OR.
.EQV. .NEQV. (Lowest)

The Image Algebra extensions incorporated into IAF primarily affect arithmetic expres-

sions. Consequently, the semantics and rules of use of FORTRAN 77 character, relational,

and logical operators and expressions are exactly the same as their semantics and rules of use

in TAF with the following exception. Arbitrary arithmetic expressions that make full use of

the Image Algebra extensions may be used as operands of relational operators within rela-

tional expressions as long as all such arithmetic expressions produce scalar results. In partic-

ular, the FORTRAN 77 relational operators '.LT.', '.LE.', '.EQ.', '.NE.', '.GT.', and

'.GE.' are not defined for image operands. Relational expressions are used, in turn, as

operands of logical operators in logical expressions. This extended form of relational expres-

sions may be freely used within arbitrary logical expressions, as well.

a. Valid Usage

Arithmetic expressions that appear in the following FORTRAN 77 executable

statements may make full use of the Image Algebra extensions of [AF arithmetic expressions

under the constraints outlined below unless the statement is the terminal statement of a

DO-loop.

* arithmetic assignment statements,

* logical assignment statements,

* block IF statements,

* ELSE IF statements,

34

* CALL statements,

* DO statements, and

* arithmetic IF statements.

A statement that is the terminal statement of a DO-loop cannot contain an arithmetic

expression that makes use of the Image Algebra extensions imparted to arithmetic expres-

sions.

All LAF statements that are one of the above types are parsed by the JAF prepro-

cessor. An TAF statement that is one of the above types and which is found to contain

Image Algebra extensions is translated by the preprocessor into one or more semantically

equivalent FORTRAN 77 statements. An IAF statement that is one of the above types and

which is found not to contain Image Algebra extensions is simply echoed to the standard out-

put file. Statements that do not require any translation are still fully parsed by the prepro-

cessor. Thus, FORTRAN 77 lexical and syntactic errors are detected and appropriate diag-

nostic error messages are emitted.

In LAF, the left-hand side of an arithmetic assignment statement can either be (i) a

variable name, (ii) an arithmetic array element reference, or (iii) an unsubscripted array

name. If the left-hand side of an arithmetic assignment statement is either (i) a variable

name or (ii) an arithmetic array element reference, then the expression on the right-hand side

must produce a scalar result. More specifically, no restriction is placed on the use of the

Image Algebra extensions in the expression on the right-hand side provided that the expres-

sion produces a scalar result. Note that intermediate results of the right-hand side expres-

sion may produce image results. If the left-hand side of an arithmetic assignment statement

is an array name, then the array represents an image. An assignment statement that has an

image on the left-hand side has a manifest coordinate set that is the coordinate set of the

left-hand side image. In this case, the expression on the right-hand side can produce either a

scalar result or an image result. If the expression on the right-hand side produces a scalar

result, then it is treated as an implicit image with the same coordinate set as the manifest

coordinate set of the assignment operation. If the expression on the right-hand side produces

an image result, then the coordinate set of the right-hand side image result must be the same

as the manifest coordinate set of the assignment operation.

The logical expression that occurs on the right-hand side of the '=' symbol in a logi-

cal assignment statement may contain one or more arithmetic expressions (since logical

35

expressions can be composed of relational expressions which can, in turn, be composed of

arithmetic expressions). In addition, the logical conditional expression that occurs in a block

IF statement or an ELSE IF statement may also contain one or more arithmetic expres-

sions. No restriction is placed on the use of the Image Algebra extensions in arithmetic

expressions that occur in these contexts other than that each such arithmetic expression

must produce a scalar result.

No restriction is placed on the use of the Image Algebra extensions in arithmetic

expressions that occur in actual arguments that are passed to SUBROUTINEs in CALL state-

ments. Note that this allows for the use of actual arguments that are arithmetic expressions

which produce image results. Actual arguments that are arithmetic expressions which pro-

duce image results are treated as if they were arrays and are passed to the referenced SUB-

ROUTINE like an array is passed. Note that the '@' symbol has no relevance whatsoever to

actual arguments that appear in CALL statements. The '@' symbol is only relevant to actual

arguments appearing in a reference to a FUNCTION.

No restriction is placed on the use of the Image Algebra extensions in the control-

ling expressions of a DO statement except that (i) each expression must produce a scalar

result, and (ii) the type of the result of each expression must be either INTEGER, REAL, or

DOUBLE PRECISION. The use of any of the Image Algebra extensions of arithmetic expres-

sions and arithmetic assignment statements within the terminal statement of a DO-loop is

prohibited.

No restriction is placed on the use of the Image Algebra extensions in the arith-

metic expression of an arithmetic IF statement except that (i) the expression must produce

a scalar result, and (ii) the type of the result produced by the expression must be either

INTEGER, REAL. or DOUBLE PRECISION.

b. Invalid Usage

Arithmetic expressions may also appear in the following FORTRAN 77 executable

statements:

* logical IF statements,

* computed GO TO statements,

" WRITE itatements,

36

* PRINT statements,

* RETURN statements, and

* statement function statements.

None of the Image Algebra extensions imparted to arithmetic expressions can be employed in

any of these statements in IAF. None of these statements are parsed by the IAF preproces-

sor. They are simply echoed to the standard output, as is, and otherwise ignored. With

respect to the logical IF statement, these restrictions apply to the logical conditional expres-

sion of the statement, as well as to any arithmetic expression occurring in the conditionally-

executed statement of the logical IF statement.

c. Temporary Storage Management

IAF arithmetic expressions that make use of the Image Algebra extensions of IAF

are translated into equivalent FORTRAN 77 expressions. These transformations will, in

general, involve the employment of temporary variables for the purpose of storing intermedi-

ate results of expression evaluations. The intermediate values that arise during the evalua-

tion of an expression will typically be some combination of scalars and images. The IAF

preprocessor manages the allocation and use of any temporary storage that is required to

effect the translation of an Image Algebra-enhanced arithmetic expression into equivalent

FORTRAN 77 arithmetic expressions.

The IAF programmer may choose to utilize one or more temporary scalar or image

entities for the purpose of retaining some scalar or image value of interest, improving the

efficiency of an algorithm, or to circumvent a restriction imposed on the use of the Image

Algebra extensions of arithmetic expressions. However, the 1AF programmer is in no way

explicitly burdened with the responsibility of managing temporary storage space. In that

respect, LAF arithmetic expressions can be written in as natural a manner as is allowed by

their syntax and use within [AF statements.

6. FURTHER RESTRICTIONS AND EXCEPTIONS

Other restrictions and exceptions on the use of IAF that have not been mentioned previ-

ously are enumerated here.

37

a. Reserved Name Space

Each valid T-F statement occurring in an LAF program is translated by the IAF

preprocessor into a sequence of semantically-equivalent valid FORTRAN 77 statements. In

the course of translation, the preprocessor defines and uses various identifiers (potentially

many). Hence we reserve a portion of the FORTRAN 77 identifier name space for the

preprocessor to accommodate its needs. Specifically, all identifiers that are six characters in

length and which start with 'XX' are reserved for this purpose. A diagnostic warning mes-

sage is issued if the programmer uses an identifier that encroaches on the reserved name

space. A dictionary of preprocessor-generated names, including a brief description of their

meaning, is given in Appendix B.

b. Reserved Statement Labels

During translation, many of the statements that are generated by the preprocessor

require a statement label. To avoid potential conflicts with statement labels used by the pro-

grammer, a portion of the statement-label space, specifically the sequence 99000 to 99999

inclusive, is reserved for preprocessor-generated statement labels. A diagnostic warning mes-

sage is issued if the programmer uses a statement label that encroaches on the reserved space

of statement labels.

c. Features Non-Standard to FORTRAN 77

Several non-ANSI Standard features that are included in many implementations of

FORTRAN 77 are also recognized by the preprocessor. In the following, a description of the

non-standard features specifically allowed by the preprocessor is given.

* The IAF preprocessor is case insensitive. However, during the translation of each state-

ment, the preprocessor maps all lower-case letters that occur in identifiers and key-

words to upper-case. Identifiers and keywords are produced in upper-case in all code

that is generated by the preprocessor. For this reason, keywords and identifiers origi-

nally entered by the programmer in lower-case may be reproduced in upper-case by the

preprocessor. FORTRAN 77 keywords and IAF keywords and code fragments are

transcribed in upper-case in this document solely to impart emphasis and consistency.

" Identifiers are considered significant only in their first 32 characters. Identifiers that

exceed thirty-two characters are truncated to thirty-two characters. A diagnostic

warning message is issued whenever the preprocessor is forced to truncate an identifier.

38

Non-standard statements denoted by the keywords INCLUDE and NAMELIST are con-

sidered valid IAF statements. These statements are given no interpretation by the

preprocessor and are simply echoed to the standard output.

The non-standard type specifiers INTEGER*2, INTEGER*4, LOGICAL*2, and LOGI-

CAL*4 can be used within type-statements and FUNCTION statements to override or

confirm the implicit type of identifiers. With respect to the Image Algebra extensions

of [AF, the type specifier INTEGER*2 can be used to override or confirm the implicit

type of an array that is used as an image provided, of course, that this feature is sup-

ported by the resident FORTRAN 77 compiler. The type specifier INTEGER*2 can-

not be used to override or confirm the implicit type of a template in either a template

declaration statement or a template definition statement. The type specifier

INTEGER*4 is treated as an alias for the standard FORTRAN 77 type specifier

INTEGER. The two type specifiers LOGICAL*2 and LOGICAL*4 are irrelevant to the

Image Algebra extensions of IAF; both of these type specifiers are treated as aliases for

the standard FORTRAN 77 type specifier LOGICAL. For mixed-mode arithmetic, the

rules for determining the type of the result of an arithmetic operation are readily

extended to include the INTEGER*2 type as follows. If the operand of a unary arith-

metic operation is of type INTEGER*2, then the result is of type INTEGER*2. If one

and only one operand of a binary arithmetic operation is of type INTEGER*2, then the

type of the result is the type of the operand that is not of type INTEGER*2. If both

operands of a binary arithmetic operation is of type INTEGER*2, then the result is of

type INTEGER*2. Note that since the declaration and definition of a template with

type INTEGER*2 is proscribed, the type of the result of an image-template operation

can never be INTEGER*2.

The following non-standard variants of the IMPLICIT statement are allowed for the

specification of implicit data typing and are considered equivalent.

IMPLICIT NONE (...)
IMPLICIT UNDEFINED (...)

The "..." denotes the usual letter group(s) of the standard IMPLICIT statement.

Undeclared identifiers whose implicit type is either NONE or UNDEFINED will elicit a

diagnostic error message if the identifier occurs in an executable statement that is

parsed by the preprocessor.

39

* The character string length specification in a CHARACTER type-statement may be writ-

ten using the symbolic name of an integer constant in either of the following forms.

CHARACTFR* (CDLEN) CARD
CHARACTER*CDLEN CARD

The ANSI Standard prohibits the second form by requiring that the character string

length specification be enclosed within parentheses if it is not an integer constant.

Hollerith constants may be used in CALL statements as actual arguments to subroutine

subprograms and as initializers within DATA statements.

An '&' in column one of an IAF source line is interpreted as a continuation character.

Use of this feature does not affect the proper interpretation of continuation characters

that are specified in the standard manner with a character other than a blank or '0' in

column six.

An ASCII horizontal-tab character that occurs in any of the first six columns of an IAF

source line effectively shifts the character immediately following the horizontal-tab

character to column seven and shifts all of the other characters remaining in the line a

corresponding amount to the right. Therefore, if a horizontal-tab is placed in one of

the first six columns of an LAF source line and the line is neither a comment nor a line

continued with a '&' placed in column one, the remaining text in the line to the right of

the horizontal-tab is treated as the first line of a new statement.

• An IAF source line that has any one of the characters 'C', '*', or 'c' in column one is

interpreted as a comment line.

An LAF source line with a '#' in column one is assumed to be relevant to the C prepro-

cessor. Each such line is echoed to the standard output and otherwise ignored by the

I AF preprocessor.

Either one of the characters '" or '"' may be used to enclose quoted character string

constants. However, if''" (resp. '"') is used as the opening quote character of a charac-

ter string constant, then '" (resp. '"') must be used as the closing quote character.

The interpretation of quote characters occurring within a character constant follows

the usual conventions whereby the occurrence of " " (resp. ""') within a character

constant that is enclosed within'" (resp. '"') quote characters is interpreted as one

(resp. '"').

40

The programmer may make full use of the ASCII character set within quoted character

string cot, its and comments.

41

SECTION IV

EXAMPLES OF THE USE OF IMAGE ALGEBRA FORTRAN

This section gives example Image Algebra FORTRAN programs that solve a variety of

image processing problems. Assume the existence of a function rdimg that reads a 64 by 64

image from some input file, and a function wrimg that writes a 64 by 64 image to some out-

put file.

The first example shows how to threshold an image such that the resulting image will

have value one at coordinates where the source image pixels have values in some range k,

through kq while other coordinates in the result image have value zero.

program thresh
integer NROWS, NCOLS
parameter (NROWS=64, NCOLS=64)
integer image (NROWSNCOLS)
integer k1. k2

call rdimg(image)
read *, k1, k2

image = (image >= k1) * image <= k2)

call wrimg(image)
end

Figure 12 shows the result of thresholding an image with gray values in the range zero

to 31 to only those values lying between 5 and 25.

"7$"

Figure 12. Image a and image a thresholded to range .5 to 2.5

42

The second example shows how to use the 0 construct to apply a function pointwise to

an image as well as to pointwise induce the subscripting of an array on an image. The pro-

gram computes the sin of an image two ways: first by applying the sin function directly to an

image, then by preparing a lookup table for the sin function on the gray value range of the

source image and computing the sin by table lookup.

Program sinprog
Integer NROWS, NCOLS
parameter (NROWS=64, NCOLS=64)
integer image(NROWS.NCOLS) ,image2(NROWSNCOLS)
integer image3 (NROWS.NCOLS)
real stable (0:255)

call rdlmg(image)

C Directly compute the sin of the image
C

Image2 = 255*sin(@ real(@ Image))

C Prepare a lookup table for the sin function on the gray value range
C

do 10 1 = 0, 255
stable(i) = sin(real(i))

10 continue

C Compute the sin by looking up values in the lookup table

C
image3 = 255*stable(@image)

call wrimg(image2)
call wrimg(image3)

end

The example that follows, in addition to showing further use of the @ construct, demon-

strates the declaration and use of translation invariant templates. The program computes

the familiar sobel edge operation. The templates sobell and sobel2 of the program are

shown pictorially in Figure 13.

43

1 2 1 1 0 -1

o 0 0 2 0 -2

-L -2 -1 1 0 -1

Figure 13. Sobel Templates sobell and sobe12

Note that in the program listing that follows, the zeros in these neighborhoods do not

appear in the template definition. Recall that zero template weights do not appear in the

configuration of a template, hence zero weights need not be assigned in a template definition.

44

program sobel
parameter (nrows=64, ncols=64)
integer image (nrows ncols)
Integer invariant sobell, sobel2

call rdirng(image)

Image = nint(§ sqrt(@ real(§ (image !gcon sobell)**2 +
+ (image !gcon sobel2)**2)))

call wrimg(image)
end

integer template sobell()
sobeliC Y1+1, Y2-1) = 1
sobeliC Y1+1, Y2) = 2
sobeliC Y1+1, Y2+1) = 1
sobeliC YI-1, Y2-1) = -1
sobellC Y1, Y2) = -2
sobeliC Y1-1, Y2+1) = -1
end

Integer template sobel2()
sobel2(Y1-1, Y2+1) =1

sobel2(Y1 ,Y2+1 = 2
sobel2(Y1+1, Y2+1) =1

iscbel2(Y1-1, Y2-1) =-1

sobel2(Y1 , Y2-1) =-2

sobel2(Y1+1, Y2-1) =-1

end

Figure 1.1 shows the result of execution of this program on an image.

Figure 1 1. Image a and~ the Sobel edges of image a

45

The next example shows the definition and use of a translation invariant template that

will translate an image in its coordinate set. Portions of the image that are translated out-

side the coordinate set in the resulting image are lost. Portions of the resulting image tiat

have source pixels outside the source coordinate set take on the value zero.

program translat
integer NROWS, NCOLS
parameter (NROWS=64, NCOLS=64)
integer image (NROWSNCOLS)
integer invariant trans

call rdimg(image)
image = image !gcon trans(2020)
call wrimg(image)

end

INTEGER TEMPLATE TRANS(DELYI. DELY2)
C
C Translates the image by DELY1 in the Y1 direction and DELY2 in the
C Y2 direction, i.e. oldimage(O,O) ends up at newimage(DELY1,DELY2)
C
C usage -- A !gcon TRANS(DELYl. DELY2)
C
C

INTEGER DELYI, DELY2
TRANS(Y1 - DELY2, Y2 - DELY2) = 1
END

Note the use of pseudo-variables Y1 and Y2 representing the row and column pixel

locations repectively of the target pixel in the definition of the template trans. This invari-

ant template definition indicates that the source configuration for a point (yj,y2) consists of

the single point (y1-Ay, y2-.y). This means that the pixel at coordinate (.Ay, Ay2) in

the result image will receive its value from the source image pixel at coordinate (0.0), for

example. Figure 1.5 shows the result of execution of this prngram.

,46

Figure 15. Image a and image a !gcon trans(20, 20)

The followirZ -'xample uses two translation variant templates, one of which is used to
-matte" out a region of an image, the other to "isolate" that same region. The values in the

isolated region are subtracted from the maximum image value (giving a negative-like effect).

In this case, the configuration of the templates matte and isolate varies depending on the tar-

get pixel location and each configuration contains either a single pixel or is empty.

program variants
integer NROWS, NCOLS
parameter (NROWS=64. NCOLS=64)
integer image (NROWSoNCOLS)
Integer variant matte, isolate

call rdlmg(image)

image = image !gcon matte(4, 4. 32,32)
S+((!max image) - image) !gcon isolate(4, 4, 32, 32)

call wrlmg(image)
end

47

INTEGER TEMPLATE ISOLATE(YlLOW, Y2LOW, Y1HIGH, Y2HIGH)
C
C ISOLATE isolates all those pixels in an image lying
C within the rectangle with lower left corner at YlLOW, Y2LOW
C and upper right corner at Y1HIGH, Y2HIGH
C
C Usage : A !gcon ISOLATE(YILOW, Y2LOW, YIHIGH, Y2HIGH)
C

INTEGER YILOW, Y2LOW, Y1HIGH, Y2HIGH

IF (Yl.GE.Y1LOW.AND.Y1.LE.YIHIGH.AND.Y2.GE.Y2LOW.A.ND.Y2.LE.Y2HIGH)
" THEN

ISOLATE(Y1. Y2) = 1
ENDIF
END

INTEGER TEMPLATE MATTE(YlLOW, Y2LOW, Y1HIGH, Y2HIGH)
C
C MATTE mattes out all those pixels in an image lying
C within the rectangle with lower left corner at YlLOW Y2LOW
C and upper right corner at Y1HIGH, Y2HIGH
C
C Usage : A !gcon MATTE(YILOW, Y2LOW, Y1HIGH, Y2HIGH)
C

INTEGER YlLOWo Y2LOW, Y1HIGH, Y2HIGH

IF (YI.LT.YlLOW.OR.Y1.GT.YlHIGH.OR.Y2.LT.Y2LOW.OR.Y2.GT.Y2HIGH)
" THEN

MATTEC Y1, Y2) = 1
ENDIF

END

The result of execution of program variants is shown in Figure 16.

Figure 16. Image a and result of program variants on a

48

The next program uses an interesting pair of templates, yltemp and y2temp. When

template yitemp is evaluated at a point y = (yl, Y2), it has a configuration containing the

single pixel y and having weight y. Similarly, y2temp, when evaluated at a point

y = (Y, Y2) has a configuration containing the single pixel y and having weight y2. The pro-

gram centroid uses these templates to compute the centroid of a binary image, that is, an

image with pixel values zero and one exclusively.

program centrold
integer NROWS, NCOLS

parameter (NROWS=64 NCOLS=64)
integer image (NROWS,NCOLS)
integer variant yltemp, y2temp
integer yl, y2

call rdimg(image)

yl = ('sum (image !gcon yltemp))/(!sum image)
y2 = C!sum (image !gcon y2temp))/(!sum image)
print *, 'centroid is C'. yl.'..y22')'

image(yly2) = 0

call wrimg(image)

end

integer template yltempO0
yltemp(yl.y2) = yl

end

Integer template y2tempO
y2temp(yl.y2) = y2
end

Note that this program uses variables named Y1 and Y2 outside the context of a tem-

plate definition. In such a case, these variable names have no special significance. Such use

o1' these variable names is permitted. Figure 17 shows the behavior of this centroid finding

program on a binary image. In the result image, the centroid is marked bv the black pixel.

The rest of the non-zero pixels in the image are gray.

49

Figure 17. Binary image a and image showing computed centroid of a

The final example shows how one might define a template that can be used to rotate

images through arbitrary angles. The method of rotation uses a simplistic model of pixel

gray values to perform interpolation of gray values. It assumes that pixels are square

patches with uniform gray value. In performing the rotation, every pixel y in the target

coordinate set is given a value derived by summing the interpolation weights of the template

configuration assigned to y by the rotate template. The configuration contains the four

points closest to the inverse rotation of pixel y. The interpolation weights are approximate.

50

C
C rotate.laf
C
C demonstrate an averaging rotation using the generalize
C convolution operation
C

integer NROWS, NCOLS
parameter (NROWS=64.NCOLS=64)
integer image(NROWSNCOLS)
real theta, pi
integer invariant trans
variant rotate

C A particularly useful number
pi = atan(1.0)*4

call rdimg(image)

write(6,*) "enter number of degrees by which to rotate"
read(5,*) theta

image = image !gcon rotate(NROWS/2. NCOLS/2. theta*pi/180.O)

call wrimg(image)
end

51

REAL TEMPLATE ROTATE(C I, J, THETA)
C
C When used in the context A !gcon ROTATE(I. J, THETA)
C this template rotates the image A THETA radians clockwise
C about the point I. J
C The method used causes some loss of information through
C averaging in Interpolation

INTEGER YIFLOOR, Y2FLOOR

Y1DOT = Y1 - I
Y2DOT = Y2 - J
CT = COS(THETA)
ST = SIN(THETA)
YlPRIME = Y1DOT*CT + Y2DOT*ST + I
Y2PRIME = -Y1DOT*ST + Y2DOT*CT + J

IF(YlPRIME.GE.O.AND.YlPRIME.LT.1) THEN
Y1FLOOR = 0
ELSE
Y1FLOOR = NINTCSIGNCYIPRIME, -1.0)/ABS(YlPRIME)*o.5 + Y1PRIME)
END IF

IFCY2PRIME.GE.O.AND.Y2PRIME.LT. 1) THEN
Y2FLOOR = 0
ELSE
Y2FLOOR = NINT(SIGNCY2PRIME, -1.O)/ABSCY2PRIME)*o.5 + Y2PRIME)
END IF

ROTATE(YIFLOOR. Y2FLOOR+1)=C1 -(YIPRIME-YlFLOOR))

+ (Y2PRIME-Y2FLOOR)
ROTATE(Y1FLQOR+1. Y2FLOOR+1)=CY1PRIME-Y1FLOOR)*

+ C Y2PRIME-Y2FLOOR)
ROTATE(Y1FLOOR, Y2FLOOR)=C1 -CY1PRIME-Y1FLOOR)*

+ C 1 - (Y2PRIME-Y2FLOOR))
ROTATE(Y1FLOOR + 1, Y2FLOOR) = CY1PRIME-Y1FLOOR)

+ C1 -CY2PRIME-Y2FLOOR))

END

Figure I8 shows the result of application of generalized convolution to an image and the

rotation temp~late.

52

Figure 18. Image a and image a rotated 23 degrees

53

SECTION V

INSTALLATION GUIDE

In this section, the procedure that must be followed to obtain an executable version of

the 1AF preprocessor that is tailored to the specific requirements of a particular installation

is described. Several parameters in the preprocessor source code can be adjusted prior to its

installation. These parameters primarily are used to establish the static size of various data

structures within the preprocessor. In addition to the straightforward adjustments to partic-

ular parameters that can be effected, some slightly more involved modifications can be made

to the source code of the preprocessor. For example, a combination of machine-specific and

operating system-specific idiosyncrasies may necessitate a slight modification to the manner

in which the preprocessor handles file I/O. It is helpful to understand, at least to some

extent, the structure and operation of the IAF preprocessor to appreciate the modifications

that one may make. Thus, a very brief overview of the preprocessor is given. Following

that, the manner in which the preprocessor is customized and installed is outlined.

1. PREPROCESSOR OVERVIEW

The IAF preprocessor translates IAF source code into semantically-equivalent ANSI

Standard FORTRAN 77 code. The preprocessor performs much of the sophisticated

analysis of its input that is typically performed by a compiler. In particular, the preprocessor

performs extensive lexical, syntactic, and semantic analysis of the LAF source code presented

to it. In addition, the preprocessor has various code generation functions that are invoked to

translate LXLF code into its FORTRAN 77 equivalent.

The lexical analyzer is sufficiently general to recognize all of the lexical tokens of FOR-

TRAN 77 (excluding FORMAT specifications) as well as the new tokens that were introduced

by LTF. At the lexical level, some of the assumptions that the preprocessor must make are

the maximum length of the input "card images" and the maximum number of characters

that are considered significant in an identifier. Both of these limits can be modified in the

source code of the preprocessor by adjusting appropriate parameters.

The preprocessor parses a significant portion of its input. Most of the FORTRAN 77

specification statements, as well as all of the executable statements that can potentially con-

tain arithmetic expressions which take advantage of the Image Algebra extensions of IAF,

are parsed. The parsing task requires a stack. In the unlikely event that the size of the

54

parse stack is exceeded d, .ng the translation of an [AF program, the maximum size of the

parse stack can be increased and the preprocessor recompiled to reflect the increased stack

size.

A symbol table is maintained by the preprocessor that stores assorted attributes of the

identifiers that occur in an IAF program. Some of the information that is collected in the

symbol table is gleaned from explicit specification statements and other information is

inferred from the manner in which identifiers are used within executable statements. The

semantic analysis of expressions that is performed by the preprocessor includes type checking

and verification that the various program objects are used in conformance to the information

stored in the symbol table and to the rules of FORTRAN 77 and IAF that govern their

proper usage. In addition to the symbol table, a semantic stack is necessary to perform

semantic analysis. The sizes of the symbol table and semantic stack can be adjusted in the

preprocessor source code, if necessary.

Additional auxiliary data structures are required for performing code generation. In

particular, there are stacks for handling actual arguments that arise in references to subpro-

grams, a data structure adjunct to the symbol table that maintains information about arrays

declared in the program, and other data structures for managing temporary scalar variables

and temporary images that are generated by the preprocessor. The sizes of all of the arrays

relevant to these data structures are also customizable.

In summary, the preprocessor is a tool of considerable sophistication, power, and flexibil-

ity. It can be readily and selectively reconfigured, on an individual basis, to accommodate

the specific requirements of a given installation.

2. CUSTOMIZING THE PREPROCESSOR

Customizability of the IAF preprocessor is almost requited by the fact that the size of

all FORTRAN 77 arrays that are local to a program unit are statically fixed at compile-

time. A consequence of this property of FORTRAN 77 is that no matter how large the data

structures internal to the [AF preprocessor are made, a moderately inventive programmer

could, with little effort, compose a program that would exceed the size of one or more of the

data structures. In any case, the preprocessor was designed to accommodate a diverse (and

essentially unknown) user audience. Consequently, the source code of the preprocessor can

be readily modified to suit the individual requirements of each recipient.

55

The vast majority of the modifications that can be made prior to compiling the prepro-

cessor are trivial in nature and simply involve the adjustment of a FORTRAN 77 PARAME-

TER in the source code. A few others are only slightly more involved. A reasonable

knowledge of FORTRAN 77 is desirable for carrying out these more advanced modifications.

It is suggested that the sizes of the various data structures be left unchanged from what they

are in the distributed source code and that the preprocessor be compiled for the first time

with these default settings. Modifications to the preprocessor source can be made at future

times as required by the mix of IAF source code that is commonly translated with it. Each

time the preprocessor source code is modified, it must, of course, be subsequently recompiled

in order to incorporate the modification(s) into a new executable image.

The source code of the LAF preprocessor contains comments of a particular form that

are meant to be helpful towards locating the places in the code where the various

modifications can be made. Each of these locator comments take the following general form.

CXXX-6LETID

The 'CXXX-' prefix is common to all of the locator comments. The '6LETID' suffix is a 6-

letter mnemonic that is intended to be suggestive of the data structure and/or function that

a particua, ,..iimnt marks.

a. Simple PARAMETERizations

The following code fragment appears in 64 places in the source code of the prepro-

cessor.

CXXX-CDLEN
INTEGER CDLEN
PARAMETER (CDLEN=72)

The CDLEN' PARAMETER determines the maximum number of characters that are recog-

nized in each line of input read by the preprocessor, as well as the length of the output lines

that are produced by the preprocessor. An input line that contains more than 72 characters

is effectively truncated; characters that occur beyond column 72 are ignored. Another rea-

sonable setting for 'CDLEN' is 80.

The following code fragment occurs 12 times in the source code.

CXXX-PREF IX
CHARACTER*2 PREFIX
PARAMETER (PREFIX= 'XX')

The 'PREFIX' PARAMETER determines the first two characters that are used to prefix all of

56

the names that are generated by the preprocessor. The two characters 'XX' can be replaced

with any two characters that can validly occur as a two-character prefix of a FORTRAN 77

identifier. However, note that modification of this PARAMETER effectively redefines the

name space that is reserved for the preprocessor. In particular, the name space that is

reserved for the preprocessor consists of all six-character identifiers that begin with the two

characters contained in the 'PREFIX' PARAMETER.

The following fragment of code occurs in the FUNCTION called 'GETTOK' and the

SUBROUTINE called 'YYCOPY'.

CXXX-MAXIDL
INTEGER MAXIDL
PARAMETER (MAXIDL=32)

The *MAXIDL' PARAMETER determines the number of significant characters in an IAF

identifier. Identifiers are allowed to exceed this length. However, all characters beyond char-

acter position 32 of an identifier are truncated.

The following fragment of code occurs in the FUNCTION called 'CLSSFY' and the

FUNCTION called 'NEWLAB'

CX)0-LABRNG
INTEGER LOWLAB, HGHLAB
PARAMETER (LOWLAB=99000, HGHLAB=99999)

These two PARAMETERs determine the range of statement labels that are reserved for the

preprocessor. If these two PARAMETERs are modified, 'LOWLAB' must be less than or equal

to "GHLAB'. The preprocessor uses only labels that fall within the range delimited by these

two PARAMETERs. The preprocessor comes to an abrupt halt when it runs out of statement

labels. Therefore, if these default values are changed, the range of statement labels specified

by the new values must be sufficient to satisfy the requirements of the preprocessor.

The following fragment of code occurs in the SUBROUTINE called 'ARRAYS'.

CXXX-ARRAYS
INTEGER MAXARR
PARAMETER (MAXARR=32)

The 'ARRAYS' SUBROUTINE manages the processing of array declarations and stores infor-

mation relevant to the use of arrays as images. The 'MAXARR' PARAMETER determines the

maximum number of arrays that can be declared in an IAF program unit. This includes

arrays that are explicitly used Ls lAF images. as well as ordinary FORTRAN 77 arrays.

57

The following fragment of code occurs in the SUBROUTINE called 'BLIFST'.

C)OO-BIFSTK
INTEGER STKSIZ
PARAMETER (STKSIZ=64)

The 'BLIFST' SUBROUTINE aids in the translation of block IF statements. The 'STKSIZ'

PARAMETER determines the maximum nesting allowed for block IF statements. A nesting

depth of 64 should be far more than adequate.

The following fragment of code occurs in the SUBROUTINE called 'CALLST'.

C)X-SUBREF
INTEGER MAXARG
PARAMETER (MAXARG=64)

The 'CALLST' SUBROUTINE translates CALL statements. The 'MAXARG' PARAMETER

determines the maximum number of actual arguments that can be specified in a reference to

a SUBROUTINE in a CALL statement.

The following fragment of code occurs in the SUBROUTINE called 'PUTCOM'.

GCOO-MAXTMP
INTEGER MAXTMP
PARAMETER (MAXTMP=256)

The 'MAXTMP' PARAMETER determines the maximum number of points in the source

configuration of an IAF template. If the default value for the 'MAXTMP' PARAMETER is

changed, then the run-time error handler (described bclow) must be modified accordingly.

The following fragment of code occurs in the SUBROUTINE called 'LEFTHS'.

C)OOC-FNCREF
INTEGER MAXARG
PARAMETER (MAXARG=64)

The 'LEFTHS' SUBROUTINE translates FUNCTION references, arrays element references,

and character substring references. The 'MAXARG' PARAMETER determines the maximum

number of actual arguments that can occur in a reference to a FUNCTION within an expres-

sion.

The following fragment of code occurs in the FUNCTION called 'PARSTK'.

CXXX-PARSTK
INTEGER STKSIZ
PARAMETER (STKSIZ=128)

The 'PARSTK' FUNCTION manages the parse stack. The 'STKSIZ' PARAMETER determines

58

the maximum size of the parse stack.

The following fragment of code occurs in the SUBROUTINE called 'SCALAR'.

C)OO- SCALAR
INTEGER MAXSCL
PARAMETER (MAXSCL=32)

The 'SCALAR' SUBROUTINE manages the allocation of temporary scalar variables that are

generated by the preprocessor for storing intermediate scalar results that arise during the

evaluation of expressions. The 'MAXSCL' PARAMETER determines the maximum number of

temporary scalar variables that can be used for evaluating all of the expressions that occur in

a single IAF statement.

The following fragment of code occurs in the SUBROUTINE called 'SEMSTK'.

CXXX-SEMSTK
INTEGER STKSIZ
PARAMETER (STKSIZ=64)

The 'SEMSTK' SUBROUTINE manages the semantic stack. The 'STKSIZ' PARAMETER

determines the maximum size of the semantic stack.

The following fragment of code occurs in the SUBROUTINE called 'STATIC'.
CXXX-STATIC

INTEGER MAXSTC
PARAMETER (MAXSTC=32)

The 'STATIC' SUBROUTINE manages the allocation of temporary images that are generated

by the preprocessor for storing intermediate image results that arise during the evaluation of

expressions. The 'MAXSTC' PARAMETER determines the maximum number of temporary

images that can be used for evaluating all of the expressions that occur in a single LAF state-

ment.

The following fragment of code occurs in the SUBROUTINE called 'STRNGS'.

CX)C-STRING
INTEGER MAXSTR, AVGLEN
PARAMETER (MAXSTR=64, AVGLEN=32)

The "STRNGS' SUBROUTINE manages a table of character strings that is used to temporarily

store miscellaneous fragments of code text that are produced by the preprocessor during code

generation. The 'MAXSTR' PARAMETER determines the maximum number of strings that

can be stored in the string table during the translation if any given IAF statement. The

"AVGLEN' PARAMETER is an estimate of the average length of a string. The total number of

59

characters that the string table can accommodate is given by the expression

"MAXSTR*AVGLEN'. Note that this character total can be exceeded with fewer than 64

strings if their average length is greater than 32. Thus, strings are entered into the string

table until either the total number of strings exceeds 64 or the total number of characters

exceeds 2048, whichever occurs first.

The following fragment of code occurs in the FUNCTION called 'SYMTBL'.

C)OO-SYMTBL
INTEGER MAXSYM. AVGLEN
PARAMETER (MAXSYM=500, AVGLEN=8)

The 'SYMTBL' FUNCTION manages the symbol table of the LAF preprocessor. The 'MAXSYM'

PARAMETER determines the maxirlim number of identifiers that can be stored in the symbol

table during the translation of any given LAF program unit. The 'AVGLEN' PARAMETER is

an estimate of the average length of an identifier. The total number of characters that the

symbol table can accommodate is given by the expression 'MAXSYM*AVGLEN'. Note that this

character total can be exceeded with fewer than 500 identifiers if the average length of the

identifiers is greater than 8. Thus, identifiers are entered into the symbol until either the

total number of identifiers exceeds 500 or the total number of characters exceeds 4000,

whichever occurs first. The names of the ANSI Standard FORTRAN 77 INTRINSIC func-

tions are always kept in the symbol table.

b. File IO

Portions of the source code of the preprocessor that help handle file input and out-

put functions are tagged with locator comments, as well. If the management of I/O has to

be slightly adjusted to conform to a particular machine or operating system, these comments

direct one to the relevant locations in the source code.

The preprocessor was developed under the L'NLX operating system and is expected

to readily port to any UNIX environment. Very little difficulty was encountered in porting

the preprocessor to a VIS environment. When ported to a V\1lS-based machine, several

FORMAT specifications may need to be replaced with the alternatives noted below. Given

that the preprocessor was implemented in strict conformance to ANSI Standard FORTRAN

77. it is expected to be easily portable, in genefal. Only time and experience can tell for

su1 re.

60

The following fragment of code occurs in the SUBROUTINE called 'WRITCD' and

the SUBROUTINE called 'ERRORS'.

CXXX- STDERR
INTEGER STDERR
PARAMETER (STDERR=O)

The 'STDERR' PARAMETER determines the unit identifier of the destination of diagnostic

error messages that are produced by the IAF preprocessor.

The following fragment of code occurs in the SUBROUTINE called 'WRITCD'.

CXXX-FORMAT
WRITE (UNIT=-C2, FMT=' (12)') CDLEN
IOFMTS(1) = '(A'//C2//')'

C IF VMS THEN REPLACE PRECEDING LINE WITH THE FOLLOWING LINE.
C IOFMTS(1) = '(lX,A'//C2//')'

WRITE (UNIT=C2, FMT='(12)') CDLEN-1
IOFMTS(2) = '(''*'',A'//C2//')'

C IF VMS THEN REPLACE PRECEDING LINE WITH THE FOLLOWING LINE.
C IOFMTS(2) = '(lX,''*'',A'//C2//')'

The FORMAT specifications that are set up in this piece of code are used during reading from

the standard input and writing to the standard output. The embedded comments indicate

alternative FORMAT specifications that are suggested for VMS environments.

rhe following fragment of code occurs in the FUNCTION called 'READCD'.

CXXX-FILEIO
READ (UNIT=*, FMT=IOFMTS(1), ERR=7000, END=8000) CARD

This is the READ statement that effects read actions on the standard input file.

The following fragment of code occurs in the SUBROUTINE called 'WRITCD'-

CXXX-FILEIO
FDPER.M 6
FDTEMP = 2
OPEN (UNIT=FDTEMP, STATUS='scratch', ACCESS='direct',
.$FORM='formatted', RECL=CDLEN, ERR=7100)

The 'FDPER!M' PARAMETER determines the unit identifier of the standard output file. The

'FDEM PARAMETER determines the unit identifier of a temporary file that is used during

tra.lnsion. This temporary file cullects code that is gener.,tcd by the preprocessor and is

internittentlv appended to h- standard file. Random access to this temporary file is

req ,ired.

61

The following fragment of code occurs in the SUBROUTINE called 'WRITCD'.

C)OO-FILEIO
WRITE (UNIT=FDPERM, FMT=IOFMTS Ci), ERR=7200) SCARD

ELSE
WRITE (UNIT=FDTEMP, FMT=IOFMTS(l), REC=NXTREC, ERR=7200) SCARD

These are the WRITE statements that write to the standard output file and the temporary

file. A.ny statement code produced by the prcprocessor is written by one of these statements.

The following fragment of code occurs in the SUBROUTINE called 'WRITCD'.

C)OCX-FILEIO
WRITE (UN IT=FDPERM, FMT=IOFMTS (2). ERR=7200) SCARD

ELSE
WRITE (LJNIT=FDTEMP, FMT=IOFMTS (2). REC=NXTRFLC. ERR=7200) SCARD

These WRITE statements also write on the standard output file and the temporary file.

These write statements emit comment lines.

The following fragment of code occurs in the SUBROUTINE called 'WRITCD'.

CXXX-FILEIO

READ (UNIT=FDTEMP, FMT=IOFMTS (1). RECI. ERR=7300) CARD
WRITE (UNIT=FDPERM, FMT=IOFMTS (1). ERR=7200) CARD

T'his pair of statements concatenates the temporary file to the tail of the standard output

file.

C. Minimum and Maximum Representable Values

The following fragment of code occurs in the SUBROUTINE called 'IMGTMv'.

CX)OC-LIMSET

LOGICAL LIMSET
PARAMETER (LIMSET=.FALSE.)

The LOGICAL value to which the 'LIMSET' PARAME~TER is set dletermines a code-generat Ion

o)pt on affecti ng th le !ainax', !amnr' , 'I truax', andl i flmn' imiage-tern llate opera Iions. In

parrticid ar, if the value of 'LIMSET' is set to 'FALSE .' I the default), then the preprocessor

will generate code lo) effect the above imnage-temnplate operations that. initializes the cornputa-

lion on ,I j:irti(Ilar target, irnage pixel b;Lsed on the first soxuirce- weight configuration that, is

ref'crenced inI tble respective template. On the other hand, If thle value (of 'LIMSET' is

TRUE.', I lien I re preprocessor will generate code for the ab~ove limage-template operations11

that. iiuitz1"liv- Ihve wriitr err j :ji 1. given target, ilxel lr:rLsid on the inrininnrirr :tnd rri:1xiPrrrnii

ViiletIII t111 hYii~ ltL i II I0. fpr''%I.wr ji v hiich tihe lid' progr:rris ;ire v e ji

The following fragment of code occurs in the SUBROUTINE called 'PUTLIM'.

CC=-LIMITS

INTEGER MXILEN
PARAMETER (MXILEN=10)
CHARACTER* (MXILEN) MXISTR
PARAMETER (MXISTR='2147483647')

INTEGER MNILEN
PARAMETER (MNILEN= 11)
CHARACTER* (MNILEN) MNISTR
PARAMETER (MNISTR='-2147483648')
INTEGER MXRLEN
PARAMETER (MXRLEN=1 1)
CHARACTER* (MXRLEN) MXRSTR
PARAMETER (MXRSTR='3.40282E+38')
INTEGER MNRLEN
PARAMETER (MNRLEN= 12)
CHARACTER* (MNRLEN) MNRSTR
PARAMETER (MNRStR-'-3. 40282E+38')
INTEGER MXDLEN
PARAMETER (MXDLEN=20)
CHARACTER* (MXDLEN) MXDSTR
PARAMETER (MXDSTR=' 1. 7976931348623D+308')
INTEGER MNDLEN
PARAMETER (MNDLEN=2 1)
CHARACTER* (MNDLEN) MNDSTR

PARAMETER (MNDSTR='-1.7976931348623D+308')

This code is relevant only if the 'LIMSET' PARAMETER is set to '.TRUE.'. The numbers

reflected as character strings in the above code correspond to the minimum and maximum

representable integer and floating point values for Sun Workstations.

This code can be taiored to apply to a particular processor. The various PARAME-

TER.s in the above code that have -MN' (resp. 'MX') as a prefix correspond to minimum (resp.

maximum) values. The third character in the names corresponds the data type of the values

where -' denotes INTEGER, 'R' denotes REAL, and ' denotes DOUBLE PRECISION. For

minimum representable values, the 'MN?STR' PARAMETER should be defined to the character

string that denotes the respective minimum representable value and the 'MN?LEN' PARAME-

TER set to the number of characters in that string. The PARAMETERs that correspond to

maximum representable values, 'MX?LEN' and 'MX?STR', should be similarly defined.

d. FORTRAN 77 INTRINSIC Functions

63

The following fragment of code occurs in the SUBROUTINE called 'STINIT'.

CXXX- INTRIN
DATA INTNAM(1),NAMLEN(1),INTTYP(1) /'INT ',3,TYINT4/
DATA INTNAM(2) ,NAMLEN(2) INTTYP(2) /'IFIX ',4,TYINT4/
DATA INTNAM(3) ,NAMLEN(3) INTTYP(3) /'IDINT ',5,TYINT4/

DATA INTNAM(4),NAMLEN(4).INTTYP(4) /'REAL '.4,TYREAL/
DATA INTNAM(5) ,NAMLEN(5) ,INTTYP(5) /'FLOAT "5,TYREAL/
DATA INTNAM(6),NAMLEN(6),INTTYP(6) /'SNGL ",4°TYREAL/
DATA INTNAM(7) NAMLEN(7) ,INTTYP(7) /'DBLE ',.4.TYDBLE/
DATA INTNAM (8) NAMLEN (8) INTTYP (8) / 'CMPLX '5, TYCMPL/
DATA INTNAM(9) ,NAMLEN(9) ,INTTYP(g) /'ICHAR ',5,TYINT4/
DATA INTNAM(1O) ,NAMLEN(1O),INTTYP(1O) /'CHAR ',4,TYCHAR/
DATA INTNAM(11),NAMLEN(11),INTTYP(11) /'AINT ".4.TYGNRC/
[:]
DATA INTNAM(80) NAMLEN(80) ,INTTYP(80) /'TANH ',4.TYGNRC/
DATA INTNAM(81) ,NAMLEN(81) ,INTTYP(81) /'DTANH ',5,TYDBLE/
DATA INTNAM(82).NAMLEN(82),INTTYP(82) /'LGE .3. TYLOG/
DATA INTNAM(83) ,NAMLEN(83) INTTYP(83) /'LGT ,3,TYLOG/
DATA INTNAM(84) ,NAMLEN(84) INTTYP(84) /'LLE .3. TYLOG/
DATA INTNAM(85) ,NAMLEN(85) ,INTTYP(85) /'LLT ',3,TYLOG/

CXXX- INTRIN
INTEGER NUMINT
PARAMETER (NUMINT=85)

Before the translation of each IAF program unit, the symbol table of the preprocessor is ini-

tialized with the names of the FORTRAN 77 INTRINSIC functions. The above code is

relevant to that initialization. In all, there are 85 INTRINSIC functions that are listed in

ANSI X3.9-1978. This total includes both specifically-typed and generically-typed INTRIN-

SIC functions.

This list can be extended as appropriate to include any additional INTRINSIC

functions that have been added to a particular FORTRAN 77 implementation. To effect

this modification, the 'NUMINT' PARAMETER is adjusted to reflect the new total number of

INTRINSIC functions. In addition, one DATA statement similar to the ones shown above is

added for each new INTRINSIC function that is introduced. The specification of an

INTRINSIC function contains three constituents (i) the name of the function as a character

string, (ii) the number of characters in the name, and (iii) the type of the result returned by

the function. The 'INTNAM(1)' array element holds the name of the function where it is

assumed that the name has at most six characters. The 'NAMLE(1)' array element is set to

the number of characters in that name. The 'INTTYP (1)' array element is set to the type

that is returned by the so named FUNCTION. The types are specified using PARAMETERs

64

that are suitably defined in the source code of the preprocessor. Specifically, the PARAME-

TER named 'TYINT4' (resp. 'TYREAL', 'TYDBLE', 'TYCMPL', 'TYCHAR', 'TYLOG') corresponds

to type INTEGER (resp. REAL, DOUBLE PRECISION, COMPLEX, CHARACTER, LOGICAL).

The PARAMETER "TYGNRC' is used to denote that a FUNCTION is generically-typed.

e. Special Note for VMS Sites

In addition to the modifications to FORMAT specifications that were mentioned

above, a couple of other minor issues are relevant to VMS installations. In particular, it may

be desirable to remove the STOP statement from the main program unit of the preprocessor.

Otherwise, a "FORTRAN STOP" message is issued whenever the preprocessor terminates nor-

mally. In addition, the following DCL commands are suggested to help in presenting a nice

user interface to the L-kF preprocessor.

ASSIGN infile SYS$INPUT
ASSIGN outfile SYS$OUTPUT

Here, 'inflle' is the name of the file containing IAF source code to be preprocessed and

'outf lie' is the name of the file that the preprocessed output is to be written to.

3. RUN-TIE ERROR-HANDLER

The IAF preprocessor generates code for reporting two detected run-time errors. The

code that is generated includes a CALL to a generic run-time error-handling SUBROUTINE

that is invoked in the event that one of these execution-time errors occurs. The following is

the run-time error handling SUBROUTINE that is assumed by the preprocessor.

65

SUBROUTINE XXERRH (LINENO. ERRNO)
INTEGER LINENO. ERRNO
INTEGER STDERR. MAXTMP
PARAMETER (STDERR=O. MAXTMP=256)
INTEGER NONCNF, TMPOVF
PARAMETER (NONCNF=l. TMPOVF--2)
WRITE (UNIT=-STDERRo FMT=9000) LINENO
IF (ERRNO.EQ.NONCNF) THEN

WRITE (UNIT=STDERR, FMT-9010)
ELSEIF (ERRNO. EQ. TMPOVF) THEN

WRITE (UNIT=STDERR, FMT=9020) MAXTMP
ENDIF

9000 FORMAT(*** Abnormal termination at "laf" source line Q 4)
9010 FORMAT('*** Image coordinate-set mismatch. *)
9020 FORMAT('*** Maximum template size of ', 14. ' exceeded. ')

STOP
END

The two run-time errors that are detected are (i) the attempt to perform some operation

involving two or more images in which at least two of the images have distinct coordinate

sets (and are, therefore, incompatible for the specified operation), and (ii) an overflow of the

maximum number of source configuration points that are allowed in an LAF template. If one

of these errors does occur at run-time, an appropriate error message is emitted by the error

handler and execution of the IAF program is terminated. The diagnostic will include the

number of the IAF source line that contains the offending code.

If a copy of this SUBROUTINE was not provided on the distribution tape, then it should

be manually typed in and made available during the linking phase of the compilation of an

LAF program. The 'STDERR' PARAMETER determines the unit identifier to which error mes-

sages are to be directed. The 'MAXTMP' PARAMETER determines the maximum number of

source configuration points that are allowed in a template. These two PARAMETERs should

be adjusted appropriately to conform to the values that they are declared to have in the

source code of the preprocessor.

4. COMPILING THE PREPROCESSOR

Once the source code of the IAF preprocessor has been customized as required, it can be

compiled and installed. All that is required to accomplish this task is a FORTRAN 77 com-

piler. The preprocessor is implemented in fairly strict conformance to ANSI Standard FOR-

TRAN 77. Hence, provided that the on-site customizations were properly done, one should

have no difficulty in compiling the preprocessor. The preprocessor was developed under the

66

UNIX operating system and ported with ease to a machine operating under VMS. With

respect to the 'f 77' compiler of many UNIX systems, it is generally necessary to increase the

size of the symbol table that is used by the compiler for storing external identifiers. The size

of this table is increased by supplying the '-Nxnnn' flag to 'f77' where 'nnn' indicates the

size of the table that is desired. The default size of the symbol table is 900. A size of 2000 is

more than adequate for compiling the preprocessor. After compilation, the executable image

of the preprocessor that was created should be appropriately integrated into the set of user

utilities that is maintained on the machine and/or an appropriate user-interface to the

preprocessor should be established by the system manager.

As stated earlier, the LAF preprocessor does not subvert the separate compilation

feature? cf FORTRAN 77. In that regard, libraries of IAF subprograms and templates can

be generated by (i) translating the relevant source code through the IAF preprocessor, (ii)

compiling the preprocessed output with a FORTRAN 77 compiler, and (iii) archiving the

resulting object code. One word of caution about the use of archived libraries is in order.
Whenever the preprocessor is recompiled, the libraries should be regenerated using the

updated version of the preprocessor. Depending on the changes made to the preprocessor,

code translated with an obsolete version of the preprocessor may be incompatible with code

translated with the new version. To be safe, it is recommended that libraries be regenerated

in-full whenever the preprocessor is modified. Otherwise, IAF programs may exhibit

unpredictable behavior at run-time.

5. ANSI NONCOMPLIANCE

The source code of the preprocessor is known to be in violation of the ANSI Standard

for FORTRAN 77 in at least one respect. In particular, liberal use was made of the full set

of printable ASCII characters which, of course, is a proper superset of the ANSI Standard

FORTRAN 77 character set. Although the IAF source code is mapped to upper-case before

it is distributed, lower-case letters within character constants are left untouched by the case-

mapping utility. Lower-case letters are primarily contained within error messages that are

produced by the preprocessor. If it is preferred to have the user presented with error mes-

sages that are all in upper-case, then the character constants in the source code of the

preprocessor must be massaged appropriately. In any case, the FORTRAN 77 character set

had to be abrogated in order to accommodate certain lexical tokens that have been intro-

duced to IAF (e.g., §@', '!max', etc.). No apologies are given, nor shouid they be expected,

for this justifiable infringement of the ANSI Standard.

67/68 (Blank)

APPENDIX A

IAF ARITHMETIC EXPRESSION GRAMMAR

69

This appendix contains a BNF grammar that describes the syntax of LAF arithmetic

expressions. The grammar rules listed below are used by the preprocessor to parse IAF

arithmetic expressions. Entities enclosed within single quotes (e.g., '*', '!dot', '--', etc.)

are literal strings that can appear in expressions. The capitalized entity IDENT (resp.,

ICONS, RCONS, DCONS, CCONS) represents an arbitrary element in the set of valid

FORTRAN 77 identifiers (resp., INTEGER constants, REAL constants, DOUBLE PRECI-

SION constants, COMPLEX constants). The grammar was designed in such a way as to

impose the prope- precedence upon the IAF arithmetic operators. Aside from the following

two exceptions, all binary arithmetic operators are left-associative.

(1) The power operator ('**') is right-associative.

(2) The characteristic-function operators ('<', '<=' '-', '=', '>', '>=') are non-associative.

The intent of this grammar is solely to describe the syntactically valid IAF arithmetic

expressions. The grammar does not enforce semantic constraints imposed on arithmetic

expressions by the definitions of FORTRAN 77 and IAF. For example, the syntactic

category "arg-list" is used to generate the actual argument lists of arithmetic function refer-

ences and the index expression lists of arithmetic array element references. The syntactic

categories "char.expr", "reL.expr", and "logexpr" (the BNF productions for which are not

reproduced here) that are used to generate character expressions, relational expressions, and

logical expressions, respectively, are syntactically valid within the "arg-list" of a function

reference and an array element reference. However, they are semantically valid only within

the "'arg-list" of a function reference. The semantic correctness of arithmetic expressions is

verified and enforced by various preprocessor functions that are invoked during the parsing

of expressions.

arith-expr -* add..expr char-func..op add..expr I add..expr

chardunc..op -- '<' I '<=' I '! 1 '>' 4>=

add..expr -. add.expr add..op bibang.expr I unL.op bibang.expr I bibang-.expr

add-op -- '+' -

uni._op-. add..op I '!inv' I '!max' I !min' "!sum'

bibang.expr --* bibang.expr bi-bang__op term]term

70

bibang-.op d~'!ot' I max' I'min'

term --, Ltzrin muIltop image-temp-.expr I image-.temp..expr

image..temp-..expr -~imag&..tem p.expr image-temp..op var..ref I factor

image...temp-.op --+ '!amax' I '!amjn' I '!gcon' I '!mmax' I '!mmin'

factor -. primary ' factor Iprimary
primary -~var..ref Iconstant TC arith-.expr T)

var..ief [*DENT IIDENT '0' IIDENT TC arg-list''

arg-list -*argJist ',' argument Iargument

argument -. arith..expr 1 '0' arith..expr I char..expr I reL-expr I Iog-.expr

constant -~ICONS I RCONS I DCONS I OCONS

71/72 (Blank)

APPENDIX B

PREPROCESSOR-RESERVED NAMES

73

All names that are six characters long and which begin with 'XX' are reserved for the

preprocessor. The use of a reserved name as an identifier within an TAF program is prohi-

bited. If the preprocessor encounters an identifier that encroaches on the reserved name

space within an L-XF program, a diagnostic warning message is issued informing the user of

the infraction. The behavior of the preprocessor on 1AF source code that utilizes one or

more reserved names as identifiers is undefined.

The preprocessor actually uses a small subset of the reserved names to identify entities

generated by the preprocessor. The names explicitly used by the IAF preprocessor are listed

below along with a brief description of their role. In the following, 'd' represents an arbitrary

decimal digit.

XXSIdd INTEGER variables that are generated by the preprocessor for storing the results of

expressions that produce INTEGER scalars.

XXSRdd The REAL analog of XXSIdd.

XXSDdd The DOUBLE PRECISION analog of XXSIdd.

XXSCdd The COMPLEX analog of XXSIdd.

XXSLdd The LOGICAL analog of XXSIdd.

X)XSSdd The INTEGER*2 analog of XXSIdd.

XXIddd INTEGER arrays that are generated by the preprocessor for the purpose of storing

the results of expressions that produce INTEGER images.

XXRddd The REAL analog of XXIddd.

XXDddd The DOUBLE PRECISION analog of XXIddd.

xCcddd The COMPLEX analog of XXIddd.

XXSddd The INTEGER*2 analog of XXIddd.

XXBddd One XXBddd INTEGER array is created by the preprocessor for each statement

that contains one or more IAF expressions which require preprocessor-generated

temporary images to evaluate them. This array is made large enough to fit all of

the temporary images created by the preprocessor for storing the intermediate

results which arise during the evaluation of the expression(s).

XXOddd INTEGER PARAMETERs set to the values of appropriate offsetti into the XXBddd

arrays at which preprocessor-generated temporary images are EQUIVALENCEd.

74

XXzddd INTEGER PARAMETERs set to the sizes of preprocessor-generated temporary

images.

XXAddd INTEGER variables that store the values of the dimension bounds of programmer-

defined images.

XXLCV1 An INTEGER variable used as the control variable of a DO-loop that iterates over

the x-coordinate of a programmer-defined image.

XXLCV2 An INTEGER variable used as the control variable of a DO-loop that iterates over

the y-coordinate of a programmer-defined image.

XXINDd INTEGER variables used to iterate over the pixels of preprocessor-generated tem-

porary images.

XXITWT An INTEGER array that stores the weight configuration of a template that has

INTEGER weights.

XXRTWT The REAL analog of XXITWT.

xxDTwT The DOUBLE PRECISION analog of XXITWT.

XXCTWT The COMPLEX analog of XXITWr.

XXMAXT An INTEGER PARAMETER that determines the maximum number of points

allowed in the source conlig iration of each programmer-defined template. The

value of this PARAMETER becomes fixed at the time when the preprocessor is

installed and can be adjusted prior to its compilation. The value of XXMAXT is ini-

tially set to 256.

XXTHWM An INTEGER variable that stores the value of the number of points in the source

configuration of a template. The value of XXTHWM becomes defined during an

image-template operation whereby it is set to the number of points in the source

configriration of the template referenced in the operation.

XXOFY1 An INTEGER array used during an image-template operation to store the x-offsets,

from the target image pixel, of the points in the source configuration of the tem-

plate.

XXOFY2 The analog to XXOFYi that is relevant to the y-offset.

XXTIY1 An INTEGER variable that indexes the x-coordinate of a target pixel during an

image-template operation.

75

XXTIY2 The analog to XXTIY1 that is relevant to the y-coordinate.

XXTLCV An INTEGER variable used as the control variable of a DO-loop that iterates over

the points in the source configuration of a template.

XXTFLG A LOGICAL variable that flags when a pixel in the target image of an image-

template operation is set to a known value. Note that XXTFLG is not relevant to

the ! gcon image-template operation.

XXCOMd The names of COMMON blocks used to implement image-template operations. They

effect the sharing of relevant data between program units which contain image-

template operations and the corresponding template definitions. For example, the

arrays which store the source and weight configurations of templates are placed in

these COMMON blocks.

XXERRH The name of a run-time error-handling SUBROUTINE.

In addition to the reserved names listed above, the INTEGER variables 'Y1' and 'Y2'

have special meaning within template definitions. The discussion of templates described the

role of these names in template definitions. Use of these variables in a template definition in

a manner which contravenes that which is prescribed is prohibited.

76

REFERENCES

G.X. Ritter. et. al.. "Standard Image Processing Algebra Document Phase II." TR (7)

Image Algebra Project. F08635-84-C-0295, Eglin AFB, FL (1987).

77/78 (Blank)

